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TRANSLATOR'S PREFACE TO THE
SECOND ENGLISH EDITION.

Since the appearance of the first edition of the

present translation of Mach's Mechanics,* the views

which Professor Mach has advanced on the philoso-

phy of science have found wide and steadily increas-

ing acceptance. Many fruitful and elucidative con-

troversies have sprung from his discussions of the

historical, logical, and psychological foundations of

physical science, and in consideration of the great

ideal success which his works have latterly met with

in Continental Europe, the time seems ripe for a still

wider dissemination of his views in English-speaking

countries. The study of the history and theory of

science is finding fuller and fuller recognition in our

universities, and it is to be hoped that the present ex-

emplary treatment of the simplest and most typical

branch of physics will stimulate further progress in

this direction.

The text of the present edition, which contains

the extensive additions :.
3
e by the author to the

* Die Mechanik in ihrer Entwickelung- historisch-kritisch dargestellt. Von
Dr. Ernst Mach, Professor an der Universitat zu Wien. Mit 257 Abbildungen.

First German edition, 1883. Fourth German edition, 1901. First edition of

the English translation, Chicago, The Open Court Publishing Co., 1893.
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latest German editions, has been thoroughly revised

by the translator. All errors, either of substance or

typography, so far as they have come to the trans-

lator's notice, have been removed, and in many cases

the phraseology has been altered. The sub-title of

the work has, in compliance with certain criticisms,

also been changed, to accord more with the wording

of the original title and to bring out the idea that the

work treats of the principles of mechanics predomi-

nantly under the aspect of their development {Entwicke-

lung). To avoid confusion in the matter of references,

the main title stands as in the first edition.

The author's additions, which are considerable,

have been relegated to the Appendix. This course

has been deemed preferable to that of incorporating

them in the text, first, because the numerous refer-

ences in other works to the pages of the first edition

thus hold good for the present edition also, and sec-

ondly, because with few exceptions the additions are

either supplementary in character, or in answer to

criticisms. A list of the subjects treated in these ad-

ditions is given in the Table of Contents, under the

heading "Appendix" on page xix.

Special reference, however, must be made to the

additions referring to Hertz's Mechanics (pp. 548~555)>

and to the history of the development of Professor

Mach's own philosophical and scientific views, notably

to his criticisms of the concepts of mass, inertia, ab-

solute motion, etc., on pp. 542-547, 555~574> and 579
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-583. The remarks here made will be found highly

elucidative, while the references given to the rich lit-

erature dealing with the history and philosophy of

science will also be found helpful.

As for the rest, the text of the present edition of

the translation is the same as that of the first. It has

had the sanction of the author and the advantage

of revision by Mr. C. S. Peirce, well known for his

studies both of analytical mechanics and of the his-

tory and logic of physics. Mr. Peirce read the proofs

of the first edition and rewrote Sec. 8 in the chapter

on Units and Measures, where the original was in-

applicable to the system commonly taught in this

country.

Thomas J.
McCormack.

La Salle, III., February, 1902.



AUTHOR'S PREFACE TO THE TRANS-
LATION.

Having read the proofs of the present translation

of my work, Die Mechanik in ihrcr Entwickelung, I can

testify that the publishers have supplied an excellent,

accurate, and faithful rendering of it, as their previous

translations of essays of mine gave me every reason to

expect. My thanks are due to all concerned, and

especially to Mr. McCormack, whose intelligent care

in the conduct of the translation has led to the dis-

covery of many errors, heretofore overlooked. I may,

thus, confidently hope, that the rise and growth of the

ideas of the great inquirers, which it was my task to

portray, will appear to my new public in distinct and

sharp outlines. E. Mach.

Prague, April 8th, 1893.



PREFACE TO THE THIRD EDITION.

That the interest in the foundations of mechanics

is still unimpaired, is shown by the works published

since 1889 by Budde, P. and J.
Friedlander, H. Hertz,

P. Johannesson, K. Lasswitz, MacGregor, K. Pearson,

J.
Petzoldt, Rosenberger, E. Strauss, Vicaire, P.

Volkmann, E. Wohlwill, and others, many of which

are deserving of consideration, even though briefly.

In Prof. Karl Pearson {Grammar of Science, Lon-

don, 1892), I have become acquainted with an inquirer

with whose epistemological views I am in accord at

nearly all essential points, and who has always taken

a frank and courageous stand against all pseudo-

scientific tendencies in science. Mechanics appears

at present to be entering on a new relationship to

physics, as is noticeable particularly in the publica-

tion of H. Hertz. The nascent transformation in our

conception of forces acting at a distance will perhaps

be influenced also by the interesting investigations of

H. Seeliger ("Ueber das Newton'sche Gravitations-

gesetz, " Sitzungsbericht der Miinchener Akademie, 1 896),

who has shown the incompatibility of a rigorous inter-

pretation of Newton's law with the assumption of an

unlimited mass of the universe.

Vienna, January, 1897. E. Mach.
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ing these cases must ever remain the method at once

the most effective and the most natural for laying this

gist and kernel bare. Indeed, it is not too much to

say that it is the only way in which a real comprehen-

sion of the general upshot of mechanics is to be at-

tained.

I have framed my exposition of the subject agree-

ably to these views. It is perhaps a little long, but, on

the other hand, I trust that it is clear. I have not in

every case been able to avoid the use of the abbrevi-

ated and precise terminology of mathematics. To do

so would have been to sacrifice matter to form ; for the
,

language of everyday life has not yet grown to be suf-

ficiently accurate for the purposes of so exact a science

as mechanics.

The elucidations which I here offer are, in part,

substantially contained in my treatise, Die Geschichte

und die Wurzel des Satzes von der Erhaltung der Arbeit

(Prague, Calve, 1872). At a later date nearly the same

views were expressed by Kirchhoff (Vorlesungen iiber

mathematische Physik: Mecha7iik, Leipsic, 1874) and by

Helmholtz {Die Thatsachen in der Wahrnehmung,

Berlin, 1879), and have since become commonplace

enough. Still the matter, as I conceive it, does not

seem to have been exhausted, and I cannot deem my
exposition to be at all superfluous.

In my fundamental conception of the nature of sci-

ence as Economy of Thought,—a view which I in-

dicated both in the treatise above cited and in my
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pamphlet, Die Gestalten der Flussigkeit (Prague, Calve,

1872), and which I somewhat more extensively devel-

oped in my academical memorial address, Die okono-

mische Natur der physikalischen Forschung (Vienna, Ge-

rold, 1882,—I no longer stand alone. I have been

much gratified to find closely allied ideas developed,

in an original manner, by Dr. R. Avenarius {Philoso-

phic als Denken der Welt, gemdss dem Princip des klein-

sten Kraftmaasses, Leipsic, Fues, 1876). Regard for

the true endeavor of philosophy, that of guiding into

one common stream the many rills of knowledge, will

not be found wanting in my work, although it takes a

determined stand against the encroachments of meta-

physical methods.

The questions here dealt with have occupied me

since my earliest youth, when my interest for them was

powerfully stimulated by the beautiful introductions of

Lagrange to the chapters of his Analytic Mechanics, as

well as by the lucid and lively tract of Jolly, Principien

der Mechanik (Stuttgart, 1852). If Duehring's esti-

mable work, Kritische Geschichte der Principien der Me-

chanik (Berlin, 1873), did not particularly influence

me, it was that at the time of its appearance, my ideas

had been not only substantially worked out, but actually

published. Nevertheless, the reader will, at least on

the destructive side, find many points of agreement

between Diihring's criticisms and those here expressed.

The new apparatus for the illustration of the sub-

ject, here figured and described, were designed entirely
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by me and constructed by Mr. F. Hajek, the mechani-

cian of the physical institute under my control.

In less immediate connection with the text stand

the fac-simile reproductions of old originals in my pos-

session. The quaint and naive traits of the great in-

quirers, which find in them their expression, have al-

ways exerted upon me a refreshing influence in my
studies, and I have desired that my readers should

share this pleasure with me.

E. Mach.

Prague, May, 1883.
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In consequence of the kind reception which this

book has met with, a very large edition has been ex-

hausted in less than five years. This circumstance and

the treatises that have since then appeared of E. Wohl-

will, H. Streintz, L. Lange, J. Epstein, F. A. Miiller,

J. Popper, G. Helm, M. Planck, F. Poske, and others

are evidence of the gratifying fact that at the present

day questions relating to the theory of cognition are

pursued with interest, which twenty years ago scarcely

anybody noticed.

As a thoroughgoing revision of my work did not

yet seem to me to be expedient, I have restricted my-

self, so far as the text is concerned, to the correction

of typographical errors, and have referred to the works

that have appeared since its original publication, as

far as possible, in a few appendices.

E. Mach.

Prague, June, i£
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The present volume is not a treatise upon the ap-

plication of the principles of mechanics. Its aim is

to clear up ideas, expose the real significance of the

matter, and get rid of metaphysical obscurities. The

little mathematics it contains is merely secondary to

this purpose.

Mechanics will here be treated, not as a branch of

mathematics, but as one of the physical sciences. If

the reader's interest is in that side of the subject, if

he is curious to know how the principles of mechanics

have been ascertained, from what sources they take

their origin, and how far they can be regarded as

permanent acquisitions, he will find, I hope, in these

pages some enlightenment. All this, the positive and

physical essence of mechanics, which makes its chief

and highest interest for a student of nature, is in ex-

isting treatises completely buried and concealed be-

neath a mass of technical considerations.

The gist and kernel of mechanical ideas has in al-

most every case grown up in the investigation of very

simple and special cases of mechanical processes ; and

the analysis of the history of the discussions concern-
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The number of the friends of this work appears to

have increased in the course of seventeen years, and

the partial consideration which my expositions have

received in the writings of Boltzmann, Foppl, Hertz,

Love, Maggi, Pearson, and Slate, have awakened in

me the hope that my work shall not have been in

vain. Especial gratification has been afforded me by

finding in J.
B. Stalio {The Concepts of Modern Physics)

another staunch ally in my attitude toward mechanics,

and in W. K. Clifford {Lectures and Essays and The

Common Sense of the Exact Sciences), a thinker of kin-

dred aims and points of view.

New books and criticisms touching on my discus-

sions have received attention in special additions,

which in some instances have assumed considerable

proportions. Of these strictures, O. Holder's note on

my criticism of the Archimedean deduction {Denken

und Anschauung in der Geometric, p. 63, note 62) has

been of special value, inasmuch as it afforded me the

opportunity of establishing my view on still firmer

foundations (see pages 512-517). I do not at all dis-

pute that rigorous demonstrations are as possible in

mechanics as in mathematics. But with respect to
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the Archimedean and certain other deductions, I am
still of the opinion that my position is the correct

one.

Other slight corrections in my work may have

been made necessary by detailed historical research,

but upon the whole I am of the opinion that I have

correctly portrayed the picture of the transformations

through which mechanics has passed, and presumably

will pass. The original text, from which the later in-

sertions are quite distinct, could therefore remain as

it first stood in the first edition. I also desire that no

changes shall be made in it even if after my death a

new edition should become necessary.

E. Mach.
Vienna, January, igoi.
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INTRODUCTION.

i. That branch of physics which is at once the old- The science

est and the simplest and which is therefore treated ics.

as introductory to other departments of this science,

is concerned with the motions and equilibrium of

masses. It bears the name of mechanics.

2. The history of the development of mechanics,

is quite indispensable to a full comprehension of the

science in its present condition. It also affords a sim-

ple and instructive example of the processes by which

natural science generally is developed.

An instinctive, irreflective knowledge of the processes instinctive
knowledge.

of nature will doubtless always precede the scientific,

conscious apprehension, or investigation, of phenom-

ena. The former is the outcome of the relation in

which the processes of nature stand to the satisfac-

tion of our wants. The acquisition of the most ele-

mentary truth does not devolve upon the individual

alone : it is pre-effected in the development of the race.

In point of fact, it is necessary to make a dis- Mechanical

tinction between mechanical experience and mechan-
expenences

ical science, in the sense in which the latter term is at

present employed. Mechanical experiences are, un-

questionably, very old. If we carefully examine the

ancient Egyptian and Assyrian monuments, we shall

find there pictorial representations of many kinds of
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Theme- implements and mechanical contrivances; but ac-

knowledge counts of the scientific knowledge of these peoples
of antiquity^ either totally lacking, or point conclusively to a

very inferior grade of attainment. By the side of

highly ingenious ap-

pliances, we behold

the crudest and rough-

est expedients em-

ployed—as the use of

sleds, for instance, for

the transportation of

enormous blocks of

stone. All bears an

instinctive, unperfec-

ted, accidental char-

acter.

So, too, prehistoric

graves contain imple-

ments whose construc-

tion and employment

imply no little skill

and much mechanical

experience. Thus,long

before theory was

dreamed of, imple-

ments, machines, me-

chanical experien-

ces, and mechanical

knowledge were abun-

dant.

3. The idea often

suggests itself that

perhaps the incom-

plete accounts we pos-
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sess have led us to underrate the science of the ancient

world. Passages occur in ancient authors which seem

to indicate a profounder knowledge than we are wont

to ascribe to those nations. Take, for instance, the

following passage from Vitruvius, De Architectwa,

Lib. V, Cap. Ill, 6 :

"The voice is a flowing breath, made sensible to a passage

"the organ of hearing by the movements it produces /iu™

"in the air. It is propagated in infinite numbers of

"circular zones* exactly as when a stone is thrown

"into a pool of standing water countless circular un-

"dulations are generated therein, which, increasing

"as they recede from the centre, spread out over a

"great distance, unless the narrowness of the locality

"or some obstacle prevent their reaching their ter-

" mination • for the first line of waves, when impeded

"by obstructions, throw by their backward swell the

"succeeding circular lines of waves into confusion.

" Conformably to the very same law, the voice also

" generates circular motions ; but with this distinction,

" that in water the circles, remaining upon the surface,

"are propagated horizontally only, while the voice is

"propagated both horizontally and vertically."

Does not this sound like the imperfect exposition controvert-
. -

.

. ed bv other

of a popular author, drawn from more accurate disqui- evidence,

sitions now lost? In what a strange light should we

ourselves appear, centuries hence, if our popular lit-

erature, which by reason of its quantity is less easily

destructible, should alone outlive the productions of

science ? This too favorable view, however, is very

rudely shaken by the multitude of other passages con-

taining such crude and patent errors as cannot be con-

ceived to exist in any high stage of scientific culture.

(See Appendix, I., p. 509.)
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The origin 4. When, where, and in what manner the develop-

ment of science actually began, is at this day difficult

historically to determine. It appears reasonable to

assume, however, that the instinctive gathering of ex-

periential facts preceded the scientific classification of

them. Traces of this process may still be detected in

the science of to-day; indeed, they are to be met with,

now and then, in ourselves. The experiments that

man heedlessly and instinctively makes in his strug-

gles to satisfy his wants, are just as thoughtlessly and

unconsciously applied. Here, for instance, belong the

primitive experiments concerning the application of

the lever in all its manifold forms. But the things

that are thus unthinkingly and instinctively discovered,

can never appear as peculiar, can never strike us as

surprising, and as a rule therefore will never supply an

impetus to further thought.

Thefunc- The transition from this stage to the classified,

cia"
S

c°iassls scientific knowledge and apprehension of facts, first be-

veiVmett comes possible on the rise of special classes and pro-
of science.

fess
"

ons wilo make the satisfaction of definite social

wants their lifelong vocation. A class of this sort oc-

cupies itself with particular kinds of natural processes.

The individuals of the class change ; old members

drop out, and new ones come in. Thus arises a need

of imparting to those who are newly come in, the

stock of experience and knowledge already possessed
;

a need of acquainting them with the conditions of the

The com- attainment of a definite end so that the result may be

oTknowi°
n
determined beforehand. The communication of knowl-

edge is thus the first occasion that compels distinct re-

flection, as everybody can still observe in himself.

Further, that which the old members of a guild me-

chanically pursue, strikes a new member as unusual

mumcation
of kn
edge,
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and strange, and thus an impulse is given to fresh re-

flection and investigation.

When we wish to bring to the knowledge of a per- ^voives^

son any phenomena or processes of nature, we have

the choice of two methods : we may allow the person to

observe matters for himself, when instruction comes

to an end ; or, we may describe to him the phenomena

in some way, so as to save him the trouble of per-

sonally making anew each experiment. Description,

however, is only possible of events that constantly re-

cur, or of events that are made up of component

parts that constantly recur. That only can be de-

scribed, and conceptually represented which is uniform

and conformable to law ; for description presupposes

the employment of names by which to designate its

elements ; and names can acquire meanings only when

applied to elements that constantly reappear,

5. In the infinite variety of nature many ordinary a unitary

events occur; while others appear uncommon, per- of nature,

plexing, astonishing, or even contradictory to the or-

dinary run of things. As long as this is the case we

do not possess a well-settled and unitary conception of

nature. Thence is imposed the task of everywhere

seeking out in the natural phenomena those elements

that are the same, and that amid all multiplicity are

ever present. By this means, on the one hand, the

most economical and briefest description and com-

munication are rendered possible; and on the other, The nature
or Knowi*

when once a person has acquired the skill of recog-edge.

nising these permanent elements throughout the great-

est range and variety of phenomena, of seeing them in

the same, this ability leads to a comprehensive, compact,

consistent, and facile conception of the facts. When once

we have reached the point where we are everywhere
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The adap- able to detect the same few simple elements, combin-
tation of .....
thoughts toing in the ordinary manner, then they appear to us as

things that are familiar; we are no longer surprised,

there is nothing new or strange to us in the phenom-
ena, we feel at home with them, they no longer per-

plex us, they are explained. It is a process of adaptation

of thoughts to facts with which we are here concerned.

Theecon- 6. Economy of communication and of apprehen-

thought. sion is of the very essence of science. Herein lies

its pacificatory, its enlightening, its refining element.

Herein, too, we possess an unerring guide to the his-

torical origin of science. In the beginning, all economy
had in immediate view the satisfaction simply of bodily

wTants. With the artisan, and still more so with the

investigator, the concisest and simplest possible knowl-

edge of a given province of natural phenomena—

a

knowledge that is attained with the least intellectual

expenditure—naturally becomes in itself an econom-

ical aim ; but though it was at first a means to an end,

when the mental motives connected therewith are once

developed and demand their satisfaction, all thought

of its original purpose, the personal need, disappears.

Further de- To find, then, what remains unaltered in the phe-

of these nomena of nature, to discover the elements thereof

and the mode of their interconnection and interdepend-

ence—this is the business of physical science. It en-

deavors, by comprehensive and thorough description,

4o make the waiting for new experiences unnecessary;

it seeks to save us the trouble of experimentation, by

making use, for example, of the known interdepend-

ence of phenomena, according to which, if one kind of

event occurs, we may be sure beforehand that a certain

other event will occur. Even in the description itself

labor may be saved, by discovering methods of de-

ideas.
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scribing; the greatest possible number of different ob- Their Pres-
o o r-

^ ent d iscus -

iects at once and in the concisest manner. All this will sion merely
J ... preparatory

be made clearer by the examination of points of detail

than can be done by a general discussion. It is fitting,

however, to prepare the way, at this stage, for the

most important points of outlook which in the course

of our work we shall have occasion to occupy.

7. We now propose to enter more minutely into the proposed
i

,' . .,-, ,
plan of

subject of our inquiries, and, at the same time, without treatment,

making the history of mechanics the chief topic of

discussion, to consider its historical development so

far as this is requisite to an understanding of the pres-

ent state of mechanical science, and so far as it does

not conflict with the unity of treatment of our main

subject. Apart from the consideration that we cannot

afford to neglect the great incentives that it is in our

power to derive from the foremost intellects of allTheincen-
-^ tives de-

epochs, incentives which taken as a whole are more rived from
r contact

fruitful than the greatest men of the present day are with the

• ii 11
great intel-

able to offer, there is no grander, no more intellectually lects of the
world.

elevating spectacle than that of the utterances of the

fundamental investigators in their gigantic power.

Possessed as yet of no methods, for these were first

created by their labors, and are only rendered compre-

hensible to us by their performances, they grapple with

and subjugate the object of their inquiry, and imprint

upon it the forms of conceptual thought. They that

know the entire course of the development of science,

will, as a matter of course, judge more freely and And the in-

crease of

more correctly of the significance of any present scien- power
J '.-.-.. which such

tific movement than they, who limited m their views a contact

.
lends.

to the age in which their own lives have been spent,

contemplate merely the momentary trend that the course

of intellectual events takes at the present moment.



CHAPTER I.

THE DEVELOPMENT OF THE PRINCIPLES OF
STATICS.

i.

THE PRINCIPLE OF THE LEVER.

Theeariiest i. The earliest investigations concerning mechan-

researchel ics of which we have any account, the investigations

states.
t0

of the ancient Greeks, related to statics, or to the doc-

trine of equilibrium. Likewise, when after the taking

of Constantinople, by the Turks in 1453 a fresh impulse

was imparted to the thought of the Occident by the an-

cient writings that the fugitive Greeks brought with

them, it was investigations in statics, principally evoked

by the works of Archimedes, that occupied the fore-

most investigators of the period. (See p. 510.)

Archimedes 2. Archimedes of Syracuse (287-212 B. C.) left

(iVYi^B.
56

behind him a number of writings, of which several

have come down to us in complete form. We will

first employ ourselves a moment with his treatise De
jEquiponderantibus, which contains propositions re-

specting the lever and the centre of gravity.

In this treatise Archimedes starts from the follow-

ing assumptions, which he regards as self-evident

:

Axiomatic a. Magnitudes of equal weight acting at equal

tionTof Ar- distances (from their point of support) are in equi-
chimedes.

hbrium.
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b. Magnitudes of equal weight acting at une- Axiomatic
°

#
assump-

qual distances (from their point of support) are tions of Ar-~ v r
. , chimedes.

not in equilibrium, but the one acting at the

greater distance sinks.

From these assumptions he deduces the following

proposition :

c. Commensurable magnitudes are in equilib-

rium when they are inversely proportional to their

distances (from the point of support).

It would seem as if analysis could hardly go be-

hind these assumptions. This is, however, when we

carefully look into the matter, not the case.

Imagine (Fig. 2) a bar, the weight of which is

neglected. The bar rests on a fulcrum. At equal dis-

tances from the fulcrum we ap-

pend two equal weights. That 1 -pr 1

the two weights, thus circum- rh rn

stanced, are in equilibrium, is
2

the assumption from which Archi-

medes starts. We might suppose that this was self- Analysis of

/, the Archi-

evident entirely apart from any experience, agreeably to medean as-

„
. . sumptions.

the so-called principle of sufficient reason ;
that in view

of the symmetry of the entire arrangement there is no

reason why rotation should occur in the one direction

rather than in the other. But we forget, in this, that

a great multitude of negative and positive experiences

is implicitly contained in our assumption ;
the negative,

for instance, that dissimilar colors of the lever-arms,

the position of the spectator, an occurrence in the vi-

cinity, and the like, exercise no influence ; the positive,

on the other hand, (as it appears in the second as-

sumption,) that not only the weights but also their dis-

tances from the supporting point are decisive factors

in the disturbance of equilibrium, that they also are cir-
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cumstances determinative of motion. By the aid of

these experiences we do indeed perceive that rest (no

motion) is the only motion which can be uniquely* de-

termined, or defined, by the determinative conditions

of the case.f

character Now we are entitled to regard our knowledge of
and value of ,,.. ... r , re • ,

the Archi- the decisive conditions of any phenomenon as sufficient
me^ean re ^^ .^ ^e event that such conditions determine the

phenomenon precisely and uniquely. Assuming the

fact of experience referred to, that the weights and

their distances alone are decisive, the first proposition

of Archimedes really possesses a high degree of evi-

dence and is eminently qualified to be made the foun-

dation of further investigations. If the spectator place

himself in the plane of symmetry of the arrangement

in question, the first proposition manifests itself, more-

over, as a highly imperative instinctive perception,—

a

result determined by the symmetry of our own body.

The pursuit of propositions of this character is, fur-

thermore, an excellent means of accustoming ourselves

in thought to the precision that nature reveals in her

processes.

Thegenerai 3. We will now reproduce in general outlines the

of the
S

iev°er train of thought by which Archimedes endeavors to re-

the^impie duce the general proposition of the lever to the par-

u?ar case
0-

ticular and apparently self-evident case. The two

equal weights i suspended at a and b (Fig. 3) are, if

the bar ab be free to rotate about its middle point c, in

equilibrium. If the whole be suspended by a cord at

c, the cord, leaving out of account the weight of the

* So as to leave only a single possibility open.

tlf, for example, we were to assume that the weight at the right de-

scended, then rotation in the opposite direction also would be determined by

the spectator, whose person exerts no influence on the phenomenon, taking

up his position on the opposite side.
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bar, will have to support the weight 2. The equal The general
? x r proposition

weights at the extremities of the bar supply accor- of the lever
° reduced to

dinsrlv the place of the double weight at the centre. the simple
to J r ° and partlc .

ular case.

a a

^~i L'j

Fig. 3-

A

Fig. 4.

1
On a lever (Fig. 4), the arms of which are in the

proportion of 1 to 2, weights are suspended in the pro-

portion of 2 to 1. The weight 2 we imagine replaced

by two weights 1, attached on either side at a distance

1 from the point of suspension. Now again we have

complete symmetry about the point of suspension, and

consequently equilibrium.

On the lever-arms 3 and 4 (Fig. 5) are suspended

the weights 4 and 3. The lever-arm 3 is prolonged

the distance 4, the arm 4 is prolonged the distance 3,

and the weights 4 and 3 are replaced respectively by

/ XX s.

r
1
! LJ

r-1 -,

LJ
r
x

AI

i> J~i U LJ l-i ll
r^

5

i •

_J LJ LJ

Fig. 5

4 and 3 pairs of symmetrically attached weights
J,

in the manner indicated in the figure. Now again we

have perfect symmetry. The preceding reasoning, The gener-
alisation.

which we have here developed with specific figures, is

easily generalised.

4. It will be of interest to look at the manner in

which Archimedes's mode of view, after the precedent

of Stevinus, was modified by Galileo.
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Galileo's
mode of
treatment.

m 71 m n

im 0.71

Fig. 6.

Galileo imagines (Fig. 6) a heavy horizontal prism,

homogeneous in material composition, suspended by

its extremities from a homogeneous bar of the same

length. The bar is provided at its middle point

with asuspensory attach-

ment. In this case equi-

librium will obtain ; this

we perceive at once. But

in this case is contained

every other case,—which

Galileo shows in the

following manner. Let

us suppose the whole

length of the bar or the prism to be i(m-\- ri). Cut

the prism in two, in such a manner that one portion

shall have the length im and the other the length in.

We can effect this without disturbing the equilibrium

by previously fastening to the bar by threads, close to

the point of proposed section, the inside extremities of

the twTo portions. We may then remove all the threads,

if the two portions of the prism be antecedently at-

tached to the bar by their centres. Since the whole

length of the bar is i(m -f- ri), the length of each half

is m -f- ri. The distance of the point of suspension of

the right-hand portion of the prism from the point of

suspension of the bar is therefore m, and that of the

left-hand portion n. The experience that we have

here to deal with the weight, and not with the form,

of the bodies, is easily made. It is thus manifest, that

equilibrium will still subsist if any weight of the mag-

nitude im be suspended at the distance n on the one

side and any weight of the magnitude in be suspended

at the distance m on the other. The instinctive elements

of our perception of this phenomenon are even more
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prominently displayed in this form of the deduction

than in that of Archimedes.

We may discover, moreover, in this beautiful pre-

sentation, a remnant of the ponderousness which was

particularly characteristic of the investigators of an-

tiquity.

How a modern physicist conceived the same prob- Lagrange's
. .

presenta-

lem, may be learned from the following presentation of tion.

Lagrange. Lagrange says : Imagine a horizontal ho-

mogeneous prism suspended at its centre. Let this

prism (Fig. 7) be conceived divided into two prisms

of the lengths im and 2/z. If now we consider the

centres of gravity of these two parts, at which we may
imagine weights to act proportional to im and 2#, the

2m 2n
I

Fig. 7.

two centres thus considered will have the distances n

and m from the point of support. This concise dis-

posal of the problem is only possible to the practised

mathematical perception.

5. The object that Archimedes and his successors object of

sought to accomplish in the considerations we have here andhissuc-

presented, consists in the endeavor to reduce the more

complicated case of the lever to the simpler and ap-

parently self-evident case, to discern the simpler in the

more complicated, or vice versa. In fact, we regard

a phenomenon as explained, when we discover in it

known simpler phenomena.

But surprising as the achievement of Archimedes

and his successors may at the first glance appear to

us, doubts as to the correctness of it, on further reflec-
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Critique of tion, nevertheless spring up. From the mere assump-

ods. tion of the equilibrium of equal weights at equal dis-

tances is derived the inverse proportionality of weight

and lever-arm ! How is that possible ? If we were

unable philosophically and a priori to excogitate the

simple fact of the dependence of equilibrium on weight

and distance, but were obliged to go for that result to

experience, in how much less a degree shall we be able,

by speculative methods, to discover the form of this

dependence, the proportionality !

Thestaticai As a matter of fact, the assumption that the equi-
moment in-

. . ......
voived in librium- disturbing effect of a weight P at the distance

auctions. L from the axis of rotation is measured by the product

P.L (the so-called statical moment), is more or less

covertly or tacitly introduced by Archimedes and all

his successors. For when Archimedes substitutes for

a large weight a series of symmetrically arranged pairs

of small weights, which weights extend beyond the point

of support, he employs in this very act the doctrine of

the centre of gravity in its more general form, which is

itself nothing else than the doctrine of the lever in its

more general form. (See Appendix, III., p. 512.)

without it Without the assumption above mentioned of the im-

tion
?"?£*" port of the product P.L, no one can prove (Fig. 8)

that a bar, placed in

any way on the tul-

crum S, is supported,

with the help of a

1
string attached to its

possible.

Ẑ S centre of gravity and
Fl8 '

8 " carried over a pulley,

by a weight equal to its own weight. But this is con-

tained in the deductions of Archimedes, Stevinus,

Galileo, and also in that of Lagrange.
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6. Huygens, indeed, reprehends this method, and Huygens's

gives a different deduction, in which he believes he has

C

A

avoided the error. If in

the presentation of La-

grange we imagine the

two portions into wdiich

the prism is divided

turned ninety degrees

about two vertical axes

passing through the cen-

tres of gravity s,s of the

prism-portions (see Fig.

ga), and it be shown
that under these circum-

stances equilibrium still D
continues to subsist, we
shall obtain the Huygenian
and simplified, it is as follows.

Fig. 9.

deduction. Abridged

In a rigid weightless

Fig. 9a. Fig. 9a.

plane (Fig. 9) through the point S we draw a straight

line, on which we cut off on the one side the length 1



i6 THE SCIENCE OF MECHANICS.

His own de- and on the other the length 2, at A and B respectively.
auction.

Qn the extremities? at r ight angles to this straight

line, we place, with the centres as points of contact, the

heavy, thin, homogeneous prisms CD and EF, of the

lengths and weights 4 and 2. Drawing the straight

line HSG (where AG = $AC) and, parallel to it, the

line CF, and translating the prism-portion CG by par-

allel displacement to FH, everything about the axis

GH is symmetrical and equilibrium obtains. But

equilibrium also obtains for the axis AB ; obtains con-

sequently for every axis through S, and therefore also

for that at right angles to AB : wherewith the new

case of the lever is given.

Apparently Apparently, nothing else is assumed here than that

ab£
peach

"

equal weights p,p (Fig. 10) in the same plane and at

equal distances /,/ from an axis AA' (in this plane)

equilibrate one another. If we place ourselves in the

plane passing through AA' perpendicularly to /,/, say

Y ,Y

G-

M

\A 1

Fig. 10. Fig. 11.

at the point M, and look now towards A and now

towards A\ we shall accord to this proposition the

same evidentness as to the first Archimedean proposi-

tion. The relation of things is, moreover, not altered if

we institute with the weights parallel displacements

with respect to the axis, as Huygens in fact does.
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The error first arises in the inference : if equilib- Yet invoiv-

i
• r r i 1 -ii- ,n8 *n tne

num obtains tor two axes 01 the plane, it also obtains final infer-

r , . •
1 1 1

• r • ence an er-

lor every ether axis passing through the point of inter- ror.

section ol the first two. This inference (if it is not to

be regarded as a purely instinctive one) can be drawn
only upon the condition that disturbant effects are as-

cribed to the weights proportional to their distances

from the axis. But in this is contained the very kernel

of the doctrine of the lever and the centre of gravity.

Let the heavy points of a plane be referred to a

system of rectangular coordinates (Fig. 11). The co-

ordinates of the centre of gravity of a system of masses

m 111 m" . . . having the coordinates x x x" . . . yy y" . . .

are, as we know,
Mathemat-

^ 2.mx 2my ic*l discus-

£—-<;- , V= -_--. sionof
2 111 2:7)1 Huygens's

inference.

If we turn the system through the angle a, the new co-

ordinates of the masses wr ill be

x
1
= x cosa — ys'ma, y 1

=y cosa -f- x s'ma

and consequently the coordinates of the centre of

gravity

2m (x cosa — ys'ma) 2mx . 2my
£ — — costr -_ sina -^-

2,711 2 111 2 in

= S cosa — ^sinaf

and, similarly,

?j 1
= i] cosa -f- ^ sma.

We accordingly obtain the coordinates of the new
centre of gravity, by simply transforming the coordi-

nates of the first centre to the new axes. The centre

of gravity remains therefore the self-same point. If

we select the centre of gravity itself as origin, then

2mx— 2my= 0. On turning the system of axes, this

relation continues to subsist. If, accordingly, equi-
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librium obtains for two axes of a plane that are per-

pendicular to each other, it also obtains, and obtains

then only, for every other axis through their point of

intersection. Hence, if equilibrium obtains for any

two axes of a plane, it will also obtain for every other

axis of the plane that passes through the point of in-

tersection of the two.

The infer- These conclusions, however, are not deducible if

sfbie
a
o
d
nTy

iS

' the coordinates of the centre of gravity are determined

dition?
c°n

*

by some other, more general equation, say

mf{x) + m'f(x') + 7n"f(x") + ...
g: m -f m' -\- m" +

The Huygenian mode of inference, therefore, is in-

admissible, and contains the very same error that we

remarked in the case of Archimedes,

seif-decep- Archimedes's self-deception in this his endeavor to

chTmedes." reduce the complicated case of the lever to the case

instinctively grasped, probably consisted in his uncon-

scious employment of studies previously made on the

centre of gravity by the help of the very proposition he

sought to prove. It is characteristic, that he will not

trust on his own authority, perhaps even on that of

others, the easily presented observation of the import

of the product P.L, but searches after a further verifi-

cation of it.

Now as a matter of fact we shall not, at least at

this stage of our progress, attain to any comprehension

whatever of the lever unless we directly discern in the

phenomena the product P.L as the factor decisive of

the disturbance of equilibrium. In so far as Archi-

medes, in his Grecian mania for demonstration, strives

to get around this, his deduction is defective. But re-

garding the import of P.L as given, the Archimedean
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deductions still retain considerable value, in so far as Function of

• 1
tne Arcn i"

the modes of conception of different cases are supported medean de-

• • duction.

the one on the other, in so far as it is shown that one

simple case contains all others, in so far as the same

mode of conception is established for all cases. Im-

agine (Fig. 12) a homogeneous prism, whose axis is

AB
y
supported at its centre C. To give a graphical

representation of the sum of the products, of the weights

and distances, the sum decisive of the disturbance of

equilibrium, let us erect upon the elements of the axis,

which are proportional to the elements of the weight,

the distances as ordinates ; the ordinates to the right

Fig. 12.

of C(as positive) being drawn upwards, and to the left illustration

of C (as negative) downwards. The sum of the areas

of the two triangles, A CD -f CBE = 0, illustrates here

the subsistence of equilibrium. If we divide the prism

into two parts at M, we may substitute the rectangle

MUWB for MTEB, and the rectangle MVXA for

TMCAB, where TP=\TE and TR = \TD, and the

prism-sections MB, MA are to be regarded as placed

at right angles to AB by rotation about Q and S.
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In the direction here indicated the Archimedean

view certainly remained a serviceable one even after

no one longer entertained any doubt of the significance

of the product P.L, and after opinion on this point had

been established historically and by abundant verifica-

tion. (See Appendix, IV., p. 514.)

Treatment 7. The manner in which the laws of the lever, as

by modem handed down to us from Archimedes in their original

p ysicists.

g
-m pje form? were further generalised and treated by

modern physicists, is very interesting and instructive.

Leonardo da Vinci (1452-1519), the famous painter

and investigator, appears to have been the first to rec-

ognise the importance of the general notion of the so-

Fig. 13.

Leonardo called statical moments. In the manuscripts he has

^sl-i'sig). left us, several passages are found from which this

clearly appears. He says, for example : We have a

bar AD (Fig. 13) free to rotate about A, and suspended

from the bar a weight P, and suspended from a string

which passes over a pulley a second weight Q. What

must be the ratio of the forces that equilibrium may ob-

tain? The lever-arm for the weight P is not AD, but

the "potential" lever AB. The lever-arm for the

weight Q is not AD, but the "potential" lever AC.

The method by which Leonardo arrived at this view

is difficult to discover. But it is clear that he recog-
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nised the essential circumstances by which the effect

of the weight is determined.

Considerations similar to those of Leonardo da Guido
Ubald;

Vinci are also found in the writings of Guido Ubaldi.

8. We will now endeavor to obtain some idea of

the way in which the notion of statical moment, by

which as we know is understood the product of a force

into the perpendicular let fall from the axis of rotation

upon the line of direction of the force, could have been

arrived at,—although the way that really led to this

idea is not now fully ascertainable. That equilibrium

exists (Fig. 14) if we lay a ^

cord, subjected at both sides

to equal tensions, over a

pulley, is perceived without

difficulty. We shall always

find a plane of symmetry for

the apparatus—the plane

which stands at right angles Fi e- J 4-

to the plane of the cord and bisects {EE) the angle made
by its two parts. The motion that might be supposed a method

possible cannot in this case be precisely determined or the notionr r J
. .

of the stat-

defined by any rule whatsoever : no motion will there- icai mo-
ment might

fore take place. If we note, now, further, that the mate- have been
arrived at.

rial of which the pulley is made is essential only to the

extent of determining the form of motion of the points

of application of the strings, we shall likewise readily

perceive that almost any portion of the pulley may
be removed without disturbing the equilibrium of

the machine. The rigid radii that lead out to the tan-

gential points of the string, are alone essential. We
see, thus, that the rigid radii (or the perpendiculars on

the linear directions of the strings) play here a part

similar to the lever-arms in the lever of Archimedes.
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This notion
derived
from the
considera-
tion of a
wheel and
axle.

Let us examine a so-called wheel and axle (Fig.

15) of wheel-radius 2 and axle-radius 1, provided re-

spectively with the cord-hung loads 1 and 2 ; an appa-

ratus which corresponds in every respect to the lever

of Archimedes. If now we place about the axle, in

any manner we may choose, a second cord, which we

subject at each side to the tension of a weight 2, the

second cord will not disturb the equilibrium. It is

plain, however, that we are also permitted to regard

si m
Fig. 15. Fig. 16.

the two pulls marked in Fig. 16 as being in equilib-

rium, by leaving the two others, as mutually destruc-

tive, out of account. But we arrive in so doing, dis-

missing from consideration all unessential features, at

the perception that not only the pulls exerted by the

weights but also the perpendiculars let fall from the

axis on the lines of the pulls, are conditions deter-

minative of motion. The decisive factors are, then,

the products of the weights into the respective per-

pendiculars let fall from the axis on the directions of

the pulls ; in other words, the so-called statical mo-

ments.

9. What we have so far considered, is the devel-

opment of our knowledge of the principle of the lever,

explain the Quite independently of this was developed the knowl-

ciiines

ma
edge of the principle of the inclined plane. It is not

necessary, however, for the comprehension of the ma-

The princi-

ple of the
lever all-

sufficient to

explain t

other ma-
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chines, to search after a new principle beyond that of

the lever; for the latter is sufficient by itself. Galileo,

for example, explains the inclined plane from the lever

in the following manner.

We have before us (Fig.

17) an inclined plane, on

which rests the w7eight

<2, held in equilibrium

by the weight P. Gali-

leo, now, points out the Flg - I? -

fact, that it is not requisite that Q should lie directly

upon the inclined plane, but that the essential point

is rather the form, or character, of the motion

of Q. We may, consequently, conceive the weight

attached to the bar AC, perpendicular to the inclined

plane, and rotatable about C. If then we institute a GaH^
very slight rotation about the point C, the weight will of. the in-

move in the element of an arc coincident with the in- plane by^

clined plane. That the path assumes a curve on the

motion being continued is of no consequence here,

since this further movement does not in the case of

equilibrium take place, and the movement of the in-

stant alone is decisive. Reverting, however, to the

observation before mentioned of Leonardo da Vinci,

we readily perceive the validity of the theorem Q.CB

= P.CA or Q/P= CA/CB = ca/cb, and thus reach

the law of equilibrium on the inclined plane. Once we

have reached the principle of the lever, we may, then,

easily apply that principle to the comprehension of

the other machines.
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ii.

THE PRINCIPLE OF THE INCLINED PLANE.

stevinus i. Stevinus, or Stevin, (1548-1620) was the first

firlt investi- who investigated the mechanical properties of the in-

michanics clined plane ; and he did so in an eminently original
of the in- T r • i -. 1 • /tt» " ~
clined , manner. If a weight lie (r lg.

pane '

f^J 18) on a horizontal table, we
perceive at once, since the

pressure is directly perpendic-

ular to the plane of the table,

by the principle of symmetry,
Fi s- l8 - that equilibrium subsists. On a

vertical wall, on the other hand, a weight is not at all

obstructed in its motion of descent. The inclined plane

accordingly will present an intermediate case between

these two limiting suppositions. Equilibrium will not

exist of itself, as it does on the horizontal support, but

it will be maintained by a less weight than that neces-

sary to preserve it on the vertical wall. The ascertain-

ment of the statical law that obtains in this case, caused

the earlier inquirers considerable difficulty.

Hismodeof Stevinus's manner of procedure is in substance as

[aw°
hing US

follows. He imagines a triangular prism with horizon-

tally placed edges, a cross-section of which ABC is

represented in Fig. 19. For the sake of illustration

we will say that AB = 2BC; also that AC is horizon-

tal. Over this prism Stevinus lays an endless string

on which 14 balls of equal weight are strung and tied

at equal distances apart. We can advantageously re-

place this string by an endless uniform chain or cord.

The chain will either be in equilibrium or it will not.

If we assume the latter to be the case, the chain, since
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the conditions of the event are not altered by its mo-

tion, must, when once actually in motion, continue to

move for ever, that is, it must present a perpetual mo-

tion, which Stevinus deems absurd. Consequently only

the first case is conceivable. The chain remains in equi-

librium. The symmetrical portion ABC may, there-

fore, without disturbing the equilibrium, be removed.

The portion AB of the chain consequently balances

the portion BC Hence: on inclined planes of equal

heights equal weights act in the inverse proportion of

the lengths of the planes.

Stevinus's
deduction
of the law
of the in-

clined
plane.

Fig. 19.
Fig. 20.

In the cross-section of the prism in Fig. 20 let us

imagine AC horizontal, BC vertical, and AB = 2BC;

furthermore, the chain-weights Q and P on AB and

BC proportional to the lengths ; it will follow then that
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Q/P= AB/BC=2. The generalisation is self-evi-

dent.

The as- 2. Unquestionably in the assumption from which

of stei?-
ns

Stevinus starts, that the endless chain does not move,

auction
6

there is contained primarily only a purely instinctive

cognition. He feels at once, and we with him, that

we have never observed anything like a motion of the

kind referred to, that a thing of such a character does

not exist. This conviction has so much logical cogency

that we accept the conclusion drawn from it respecting

the law of equilibrium on the inclined plane without the

thought of an objection, although the law if presented

as the simple result of experiment, or otherwise put,

Their in- would appear dubious. We cannot be surprised at this

character, when we reflect that all results of experiment are ob-

scured by adventitious circumstances (as friction, etc.),

and that every conjecture as to the conditions which are

determinative in a given case is liable to error. That

Stevinus ascribes to instinctive knowledge of this sort

a higher authority than to simple, manifest, direct ob-

servation might excite in us astonishment if we did not

ourselves possess the same inclination. The question

accordingly forces itself upon us : Whence does this

higher authority come ? If we remember that scientific

demonstration, and scientific criticism generally can

only have sprung from the consciousness of the individ-

ual fallibility of investigators, the explanation is not far

Their cog- to seek. We feel clearly, that we ourselves have con-

tributed nothing to the creation of instinctive knowl-

edge, that we have added to it nothing arbitrarily, but

that it exists in absolute independence of our partici-

pation. Our mistrust of our own subjective interpre-

tation of the facts observed, is thus dissipated.

Stevinus's deduction is one of the rarest fossil in-

ency.
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dications that we possess in the primitive history of High histor-
r x ical value 01

mechanics, and throws a wonderful light on the pro- stevinus's
'

. . deduction.

cess of the formation of science generally, on its rise

from instinctive knowledge. We will recall to mind

that Archimedes pursued exactly the same tendency

as Stevinus, only with much less good fortune. In

later times, also, instinctive knowledge is very fre-

quently taken as the starting-point of investigations.

Every experimenter can daily observe in his own per-

son the guidance that instinctive knowledge furnishes

him. If he succeeds in abstractly formulating what

is contained in it, he will as a rule have made an im-

portant advance in science.

Stevinus's procedure is no error. If an error were The trust-

.
worthiness

contained in it, we should all share it. Indeed, it is of instinc-

tive knowl
perfectly certain, that the union of the strongest in- edge.

stinct with the greatest power of abstract formulation

alone constitutes the great natural inquirer. This by

no means compels us, however, to create a new mysti-

cism out of the instinctive in science and to regard this

factor as infallible. That it is not infallible, we very

easily discover. Even instinctive knowledge of so

great logical force as the principle of symmetry em-

ployed by Archimedes, may lead us astray. Many of

my readers will recall to mind, perhaps, the intellectual

shock they experienced when they heard for the first

time that a magnetic needle lying in the magnetic

meridian is deflected in a definite direction away from

the meridian by a wire conducting a current being car-

ried along in a parallel direction above it. The instinc-

tive is just as fallible as the distinctly conscious. Its only

value is in provinces with which we are very familiar.

Let us rather put to ourselves, in preference to

pursuing mystical speculations on this subject, the
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The origin question : How does instinctive knowledge originate
of instinc- ^

. 7 - i ,

tiveknowl- and what are its contents? Everything which we ob-
edge. . ...

serve in nature imprints itself uncornprehended and un-

analysed in our percepts and ideas, which, then, in their

turn, mimic the processes of nature in their most gen-

eral and most striking features. In these accumulated

experiences we possess a treasure-store which is ever

close at hand and of which only the smallest portion

is embodied in clear articulate thought. The circum-

stance that it is far easier to resort to these experi-

ences than it is to nature herself, and that they are,

notwithstanding this, free, in the sense indicated, from

all subjectivity, invests them with a high value. It

is a peculiar property of instinctive knowledge that it

is predominantly of a negative nature. We cannot so

well say what must happen as we can what cannot hap-

pen, since the latter alone stands in glaring contrast to

the obscure mass of experience in us in which single

characters are not distinguished,

instinctive Still, great as the importance of instinctive knowl-
knowledge , , £ ,. £
and extern- edge may be, tor discovery, we must not, irom our

mutually point of view, rest content with the recognition of its .

each other, authority. We must inquire, on the contrary : Under
what conditions could the instinctive knowledge in

question have originated? We then ordinarily find that

the very principle to establish which we had recourse

to instinctive knowledge, constitutes in its turn the fun-

damental condition of the origin of that knowledge.

And this is quite obvious and natural. Our instinctive

knowledge leads us to the principle which explains that

knowledge itself, and which is in its turn also corrobo-

rated by the existence of that knowledge, which is a

separate fact by itself. This we will find on close ex-

amination is the state of things in Stevinus's case.
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-\. The reasoning of Stevinus impresses us as soTheingen-
J ° •" uity of Ste-

highlv ingenious because the result at which he arrives vinus's rea-
J ° soning.

apparently contains more than the assumption from

which he starts. While on the one hand, to avoid con-

tradictions, we are constrained to let the result pass, on

the other an incentive remains which impels us to seek

further insight. If Stevinus had distinctly set forth

the entire fact in all its aspects, as Galileo subsequently

did, his reasoning would no longer strike us as ingen-

ious ; but we should have obtained a much more satis-

factory and clear insight into the matter. In the

endless chain which does not glide upon the prism, is

contained, in fact, everything. We might say, the

chain does not glide because no sinking of heavy bodies

takes place here. This would not be accurate, how-

ever, for when the chain moves many of its links really

do descend, while others rise in their place. We must

say, therefore, more accurately, the chain does not

glide because for every body that could possibly de- g^g^,/
scend an equally heavy body would have to ascend deduction,

equally high, or a body of double the weight half the

height, and so on. This fact was familiar to Stevinus,

who presented it, indeed, in his theory of pulleys
;

but he wTas plainly too distrustful of himself to lay

down the law, without additional support, as also valid

for the inclined plane. But if such a law did not exist

universally, our instinctive knowledge respecting the

endless chain could never have originated. With this

our minds are completely enlightened.—The fact that

Stevinus did not go as far as this in his reasoning and

rested content with bringing his (indirectly discovered)

ideas into agreement with his instinctive thought, need

not further disturb us. (See p. 51 5.)

The service which Stevinus renders himself and his
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The merit* readers, consists, therefore, in the contrast and com-

nus's
e
proce- parison of knowledge that is instinctive with knowledge

that is clear, in the bringing the two into connection

and accord with one another, and in the supporting

Fig. 21.

the one upon the other. The strengthening of mental

view which Stevinus acquired by this procedure, we

learn from the fact that a picture of the endless chain

and the prism graces as vignette, with the inscription

*' Wonder en is gheen wonder," the title-page of his
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work Hypomnemata Mathematica (Leyden, 1605).* As

a fact, every enlightening progress made in science is

accompanied with a certain feeling of disillusionment.

We discover that that which appeared wonderful to

us is no more wonderful than other things which we
know instinctively and regard as self-evident ; nay,

that the contrary would be much more wonderful ; that

everywhere the same fact expresses itself. Our puzzle

turns out then to be a puzzle no more ; it vanishes into

nothingness, and takes its place among the shadows

of history.

4. After he had arrived at the principle of the in-

clined plane, it was easy for Stevinus to apply that

principle to the other machines and to explain by it

their action. He makes, for example, the following

application.

We have, let us suppose, an inclined plane (Fig.

22) and on it a load Q. We pass a string over the

pulley A at the summit and imagine the load Q held in

equilibrium by the load P.

Stevinus, now, proceeds by

a method similar to that

later taken by Galileo. He
remarks that it is not ne-

cessary that the load Q
should lie directly on the

inclined plane. Provided

only the form of the machine's motion be preserved, the

proportion between force and load will in all cases re-

main the same. We may therefore equally well conceive

the load Q to be attached to a properly weighted string

passing over a pulley D: which string is normal to the

*The title given is that of Willebrord Snell's Latin translation (1608) of

Simon Stevin's Wisconstige Gedachtenissen, Leyden, 1605.— Trans.

•
Enlighten-
ment in
science al-

ways ac-
companied
withdisillu
sionment.

Explana-
tion of the
other ma-
chines by
Stevinus's
principle.

Fig. 22
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The funicu- inclined plane. If we carry out this alteration, we
hr machine^^ have ^ so-called funicular machine. We now

perceive that we can ascertain very easily the portion

of weight with which the body on the inclined plane

tends downwards. We have only to draw a vertical

line and to cut off on it a portion ab corresponding to

the load Q. Then drawing on aA the perpendicular

be, we have f/Q = AC/AH = ac/ab. Therefore ac

represents the tension of the string aA. Nothing pre-

vents us, now, from making the two strings change

And the functions and from imagining the load Q to lie on the

of the
a
par

a
aT- dotted inclined plane EDF. Similarly, here, we ob-

forcls
am

° tain ad for the tension of the second string. In this

manner, accordingly, Stevinus indirectly arrives at a

knowledge of the statical relations of the funicular

machine and of the so-called parallelogram of forces
;
at

first, of course, only for the particular case of strings

(or forces) ac, ad at right angles to one another.

The general Subsequently, indeed, Stevinus employs the prin-

iast

m
m°e

f

n
he

ciple of the composition and resolution of forces in

a more general form
;
yet the method by which hetioned prin-

ciple also
employed.

Fig. 23. Fig. 24.

reached the principle, is not very clear, or at least is

not obvious. He remarks, for example, that if we

have three strings AB, AC, AD, stretched at any
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given angles, and the weight P is suspended from the

first, the tensions may be determined in the following

manner. We produce (Fig. 23) AB to X and cut off

on it a portion AE. Drawing from the point E, EF
parallel to AD and EG paral-

lel to AC, the tensions of AB,
AC, AD are respectively pro-

portional to AE, AF, AG.
With the assistance of this

principle of construction Ste-

vinus solves highly compli- Fig. 25.

cated problems. He determines, for instance, the solution of

tensions of a system of ramifying strings like that pirated"
1"

illustrated in Fig. 24 ; in doing which of course he
pr

° ems '

starts from the given tension of the vertical string.

The relations of the tensions of a funicular polygon

are likewise ascertained by construction, in the man-
ner indicated in Fig. 25.

We may therefore, by means of the principle of the General re-

inclined plane, seek to elucidate the conditions of op-

eration of the other simple machines, in a manner sim-

ilar to that which we employed in the case of the prin-

ciple of the lever.

in.

THE PRINCIPLE OF THE COMPOSITION OF FORCES.

i. The principle of the parallelogram of forces, at The prind-

which Stevinus arrived and employed, (yet without ex- pa^aiieio
6

pressly formulating it,) consists, as we know, of the forces?

following truth. If a body A (Fig. 26) is acted upon

by two forces whose directions coincide with the lines

AB and AC, and whose magnitudes are proportional to

the lengths AB and AC, these two forces produce the
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Fig. 26.

same effect as a single force, which acts in the direction

of the diagonal AD of the parallelogram ABCD and is

proportional to that diagonal. For instance, if on the

strings AB, AC weights

exactly proportional to the

lengths AB, AC be sup-

posed to act, a single

weight acting on the string

^^exactly proportional to

the length AD will produce the same effect as the first

two. The forces AB and AC are called the compo-

nents, the force AD the resultant. It is furthermore

obvious, that conversely, a single force is replaceable

by two or several other forces.

Method by 2. We shall now endeavor, in connection with the

ge
b
ner

h
ai no- investigations of Stevinus, to give ourselves some idea

par
n
ai°iiio-

e
of the manner in which the

fo

r

r

a
cls°

f

Nf f general proposition of the

beenar
have \^^\ parallelogram of forces

nved at ' ™ ^ \ might have been arrived

at. The relation,—dis-

covered by Stevinus,

—

that exists between two

mutually perpendicular

forces and a third force

that equilibrates them, we

shall assume as (indi-

rectly) given. We sup-

pose now (Fig. 27) that

there act on three strings

OX, OY, OZ, pulls which

balance each other. Let us endeavor to determine the

nature of these pulls. Each pull holds the two remain-

ing ones in equilibrium. The pull OYwe will replace

\
z u

s

\ p

<1 \V

w n

X

m

Fig. 27.
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(following Stevinus's principle) by two new rectangular The deduc-

pulls, one in the direction Ou (the prolongation of general
.
r t

.
principle

OX), and one at right angles thereto in the direction from the
J special case

Ov. And let us similarly resolve the pull OZ in the ofstevinus.

directions Ou and Ow. The sum of the pulls in the di-

rection Ou, then, must balance the pull OX, and the

two pulls in the directions Ov and Ow must mutually

destroy each other. Taking the two latter as equal

and opposite, and representing them by Om and On,

we determine coincidently with the operation the com-

ponents Op and Oq parallel to Ou, as well also as the

pulls Or, Os. Now the sum Op + Oq is equal and op-

posite to the pull in the direction of OX; and if we

draw st parallel to OY, or rt parallel to OZ, either line

will cut off the portion Ot = Op + Oq : with which re-

sult the general principle of the parallelogram of forces

is reached.

The general case of composition may be deduced a different&
f . . mode of the

in still another way from the special composition 01 same de-
duction,

rectangular forces. Let OA and OB be the two forces

acting at O. For OB substitute

a force OC acting parallel to

OA and a force OD acting at

right angles to OA. There

then act for OA and OB the D B F
two forces OE = OA + OC Fig - 28 '

and OD, the resultant of which forces OF is at the same

time the diagonal of the parallelogram OAFB con-

structed on OA and OB as sides.

-\. The principle of the parallelogram of forces, The prin-
u r x

. ciple here

when reached by the method of Stevinus, presents it- presents it-

.
self as an

self as an indirect discovery. It is exhibited as a con- indirect
discovery.

sequence and as the condition of known facts. We
perceive, however, merely that it does exist, not, as yet

O C



36 THE SCIENCE OF MECHANICS.

And is first why it exists ; that is, we cannot reduce it (as in dy-
clceirlv

enunciated namics) to still simpler propositions. In statics, in-
by Newton . . - .. ,

and varig- deed, the principle was not fully admitted until the

time of Varignon, when dynamics, which leads directly

to the principle, was already so far advanced that its

adoption therefrom presented no difficulties. The prin-

ciple of the parallelogram of forces was first clearly

enunciated by Newton in his Principles ofNatural Phi-

losophy. In the same year, Varignon, independently of

Newton, also enunciated the principle, in a work sub-

mitted to the Paris Academy (but not published un-

til after its author's death), and made, by the aid of a

geometrical theorem, extended practical application

of it.*

The geometrical theorem referred to is this. If we
consider (Fig. 29) a parallelogram the sides of which

are/ and q, and the diagonal is r, and from any point m
in the plane of the par-

allelogram we draw per-

pendiculars on these

three straight lines,

which perpendiculars

we will designate as

u, v, w, then p . u -\~

q . v = r . w. This is

easily proved by draw-

Fig. 29. Fig. 30. ing straight lines from m
to the extremities of the diagonal and of the sides of

the parallelogram, and considering the areas of the

triangles thus formed, which are equal to the halves

of the products specified. If the point m be taken

within the parallelogram and perpendiculars then be

The geo-
metrical
theorem
employed
by Varig-
non.

* In the same year, 1687, Father Bernard Lami published a little appendix

to his Traite de mechanique, developing the same principle.— Trans.
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drawn, the theorem passes into the form p .
u — q . v

= r . w. Finally, if m be taken on the diagonal and

perpendiculars again be drawn, we shall get, since the

perpendicular, let fall on the diagonal is now zero,

p. u — q . v = or p . u = q . v.

With the assistance of the observation that forces The deduc-

are proportional to the motions produced by them in

equal intervals of time, Varignon easily advances from

the composition of motions to the composition of forces.

Forces, which acting at a point are represented in

magnitude and direction by the sides of a parallelo-

gram, are replaceable by a single force, similarly rep-

resented by the diagonal of that parallelogram.

If now, in the parallelogram considered,/ and ^Moments of

represent the concurrent forces (the components) and r
°rces "

the force competent to take their place (the resultant),

then the products pu, qv, rw are called the moments

of these forces with respect to the point m. If the point

m lie in the direction of the resultant, the two moments

pu and qv are with respect to it equal to each other.

a. With the assistance of this principle Varignon is varignon-s
T

.
treatment

now in a position to treat
y^

the machines in a much

simpler manner than were

his predecessors. Let us

consider, for example,

(Fig. 31) a rigid body

capable of rotation about

an axis passing through

O. Perpendicular to the

axis we conceive a plane,

and select therein two
Ig ' 3I "

points A, B, on which two forces P and Q in the plane

are supposed to act. We recognise with Varignon
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The deduc-that the effect of the forces is not altered if their points
tion of the .

-i
• 1 i • i-

law of the of application be displaced along their line of action,
lever from . . . . .

the parai- since all points in the same direction are rigidly con-

pnncipie. nected with one another and each one presses and pulls

the other. We may, accordingly, suppose P applied

at any point in the direction AX, and Q at any point

in the direction BY, consequently also at their point

of intersection M. With the forces as displaced to M,
then, we construct a parallelogram, and replace the

forces by their resultant. We have now to do only

with the effect of the latter. If it act only on movable

points, equilibrium will not obtain. If, however, the

direction of its action pass through the axis, through

the point O, which is not movable, no motion can take

place and equilibrium will obtain. In the latter case

O is a point on the resultant, and if we drop the per-

pendiculars u and v from O on the directions of the

forces ft, q, we shall have, in conformity with the the-

orem before mentioned, ft
• u = q • v. With this Ave

have deduced the law of the lever from the principle

of the parallelogram of forces.

The statics Varignon explains in like manner a number of other

adynamicai cases of equilibrium by the equilibration of the result-

ant force by some obstacle or restraint. On the in-

clined plane, for example, equilibrium exists if the re-

sultant is found to be at right angles to the plane. In

fact, Varignon rests statics in its entirety on a dynamic

foundation ; to his mind, it is but a special case of dy-

namics. The more general dynamical case constantly

hovers before him and he restricts himself in his inves-

tigation voluntarily to the case of equilibrium. We
are confronted here with a dynamical statics, such

as was possible only after the researches of Galileo.

Incidentally, it may be remarked, that from Varignon
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is derived the majority of the theorems and methods

of presentation which make up the statics of modern

elementary text-books.

q. As we have already seen, purely statical consid- Special
<J j ' i. j statical con-

erations also lead to the proposition of the parallel- siderations

.
also lead to

ogram of forces. In special cases, in fact, the principle tje^rin-

admits of being very easily verified. We recognise at

once, for instance, that any number whatsoever of equal

forces acting (by pull or pressure) in the same plane at

a point, around which their suc-

cessive lines make equal angles,

are in equilibrium. If, for exam-

ple, (Fig. 32) the three equal

forces OA, OB, OC act on the

point at angles of 120 ,
each

two of the forces holds the third

in equilibrium. We see imme-

diately that the resultant of OA
and OB is equal and opposite to OC. It is represented

by OD and is at the same time the diagonal of the

parallelogram OADB, which readily follows from the

fact that the radius of a circle is also the side of the

hexagon included by it.

Fig. 32.

6. If the concurrent forces act in the same or in The case of
. . , coincident

opposite directions, the resultant is equal to the sum forcesr * merely a
particular
caste of the
general

B , & c i
Principle.

o

B C

O' A'

or the difference of the

components. We rec-

ognise both cases with-

out any difficulty as

particular cases of the

principle of the paral-

lelogram of forces. If in the two drawings of Fig. 33

we imagine the angle A OB to be gradually reduced

to the value o°, and the angle A' 0' B' increased to the

Fig. 33-
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value 180 , we shall perceive that OC passes into OA -f-

AC= OA + OH and f C into O A' — A' C = 0' A'

— O' B'. The principle of the parallelogram of forces

includes, accordingly, propositions which are generally

made to precede it as independent theorems.

The princi- 7. The principle of the parallelogram of forces, in
pea propo- c .. ^y j
shionde- the form in which it was set forth by Mewton and

experience. Varignon, clearly discloses itself as a proposition de-

rived from experience. A point acted on by two forces

describes with accelerations proportional to the forces

two mutually independent motions. On this fact the

parallelogram construction is based. Daniel Ber-

noulli, however, was of opinion that the proposition of

the parallelogram of forces was a geometrical truth, in-

dependent of physical experience. And he attempted

to furnish for it a geometrical demonstration, the chief

features of which we shall here take into consideration,

as the Bernoullian view has not, even at the present

day, entirely disappeared.

Daniel Ber- If two equal forces, at right angles to each other

tempted
a

" (Fig. 34), act on a point, there can be no doubt, ac-

deraonstra- n cording to Bernoulli, that the line

truth?
t e ^ 7f\ °f bisection of the angle (con-

formably to the principle of sym-

metry) is the direction of the re-

. sultant r. To determine geomet-

rically also the magnitude of the

resultant, each of the forces / is

Fi8 34. decomposed into two equal forces

q, parallel and perpendicular to r. The relation in

respect of magnitude thus produced between p and q

is consequently the same as that between r and /. We
have, accordingly

:

p = fx . q and r = jj. . /; whence r = pi 2
q.
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Since, however, the forces q acting at right angles

to r destroy each other, while those parallel to r con-

stitute the resultant, it further follows that

r — 2q; hence ji = l/2, and r = \/% . p.

The resultant, therefore, is represented also in re-

spect of magnitude by the diagonal of the square con-

structed on p as side.

Similarly, the magnitude may be determined of the The case of
J unequal

resultant of unequal rectangular components. Here, rectangular
components

however, nothing is known before-

hand concerning the direction of

the resultant r. If we decompose

the components /, q (Fig. 35), P

parallel and perpendicular to the

yet undetermined direction r, into

the forces u, s and v, t, the new

forces will form with the compo-

nents/, q the same angles that p,

q form with r. From which fact the following relations

in respect of magnitude are determined :

r p ' r q— = and — = —

,

p 11 q v

from which two latter equations follows s = t =pqjr.

On the other hand, however,

p* q 2

r = u -4- v = h 2— or r 2 = p 2 4- a 2
.

r r

The diagonal of the rectangle constructed on p and

q represents accordingly the magnitude of the result-

ant.

Therefore, for all rhombs, the direction of the re- General re-

sultant is determined ; for all rectangles, the magni-

tude; and for squares both magnitude and direction.

Bernoulli then solves the problem of substituting for

r p r q
- - = --and-=-^-,
q s p t
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two equal forces acting at one given angle, other equal,

equivalent forces acting at a different angle ; and finally

arrives by circumstantial considerations, not wholly

exempt from mathematical objections, but amended

later by Poisson, at the general principle.

Critique of 8. Let us now examine the physical aspect of this
Bernoulli's . . • • i • i r

method. question. As a proposition derived Irom experience,

the principle of the parallelogram of forces was already

known to Bernoulli. What Bernoulli really does, there-

fore, is to simulate towards himself a complete ignorance

of the proposition and then attempt to philosophise

it abstractly out of the fewest possible assumptions.

Such work is by no means devoid of meaning and pur-

pose. On the contrary, we discover by such proce-

dures, how few and how imperceptible the experiences

are that suffice to supply a principle. Only we must

not deceive ourselves, as Bernoulli did ; we must keep

before our minds all the assumptions, and should over-

look no experience which we involuntarily employ.

What are the assumptions, then, contained in Bernoul-

li's deduction?

The as- 9. Statics, primarily, is acquainted with force only

of

K

8
as a pull or a pressure, that from whatever source it

rived°from" may come always admits of being replaced by the pull
experience.

or the pressure Qf a weight. All forces thus may be re-

garded as quantities of the same kind and be measured

by weights. Experience further instructs us, that the

particular factor of a force which is determinative of

equilibrium or determinative of motion, is contained

not only in the magnitude of the force but also in its

direction, which is made known by the direction of the

resulting motion, by the direction of a stretched cord,

or in some like manner. We may ascribe magnitude

indeed to other things given in physical experience,
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such as temperature, potential function, but not direc-

tion. The fact that both magnitude and direction are

determinative in the efficiency of a force impressed on

a point is an important though it may be an unob-

trusive experience.

Granting, then, that the magnitude and direction Magnitude
_ .... and direc-

of forces impressed on a point alone are decisive, it will tion the sole
*-

#
decisive

be perceived that two equal and opposite forces, as they factors,

cannot uniquely and precisely determine any motion,

are in equilibrium. So, also, at

right angles to its direction, a

force/ is unable uniquely to de-

termine a motional effect. But

if a force / is inclined at an an-

gle to another direction ss' (Fig.

36), it is able to determine a mo-

tion in that direction. Yet ex-

penence alone can mtorm us,

that the motion is determined in the direction of s'

s

and not in that of ss' ; that is to say, in the direction

of the side of the acute angle or in the direction of the

projection of p on s's.

Now this latter experience is made use of by Ber-The<#^of
1 r ,i direction

noulli at the very start. The sense, namely, 01 the re- derivable

, r . . ,
,

only from
sultant of two equal forces acting at right angles to one experience,

another is obtainable only on the ground of this expe-

rience. From the principle of symmetry follows only,

that the resultant falls in the plane of the forces and

coincides with the line of bisection of the angle, not

however that it falls in the acute angle. But if we sur-

render this latter determination, our whole proof is ex-

ploded before it is begun.

10. If, now, we have reached the conviction that

our knowledge of the effect of the direction of a force is
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So also solely obtainable from experience, still less then shall
must the .... .

form of the we believe it in our power to ascertain by any other way
thusde- Xheform of this effect. It is utterly out of our power,
rived. . . .... ,

to divme, that a force p acts in a direction s that makes

with its own direction the angle a, exactly as a force

/ cos a in the direction s ; a statement equivalent to the

proposition of the parallelogram of forces. Nor was

it in Bernoulli's power to do this. Nevertheless, he

makes use, scarcely perceptible it is true, of expe-

riences that involve by implication this very mathe-

matical fact.

The man- A person already familiar with the composition
tier in

which the and resolution of forces is well aware that several forces
assump-
tions men- acting at a point are, as regards their effect, replaceable,

into Ber- in every respect and in every direction, by a single force.

auction. This knowledge, in Bernoulli's mode of proof, is ex-

pressed in the fact that the forces p, q are regarded as

absolutely qualified to replace in all respects the forces

s, u and /, v, as well in the direction of r as in every

other direction. Similarly r is regarded as the equiv-

alent of p and q. It is further assumed as wholly in-

different, whether we estimate s, u, I, v first in the

directions of/, q, and then/, q in the direction of r, or

s, u, t, v be estimated directly and from the outset in

the direction of r. But this is something that a person

only can know who has antecedently acquired a very

extensive experience concerning the composition and

resolution of forces. We reach most simply the knowl-

edge of the fact referred to, by starting from the knowl-

edge of another fact, namely that a force/ acts in a

direction making with its own an angle a, with an effect

equivalent to p • cos a. As a fact, this is the way the

perception of the truth was reached.

Let the coplanar forces P, P', P" . . . be applied to
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one and the same point at the angles a, a. a" . . . with Mathemat-v ° ' ' ical analy-

a given direction X. These forces, let us suppose, are sis of the&
. . .

results of

replaceable by a single force 77, which makes with X the true and
# .

necessary
an angle ju. By the familiar principle we have then assumption.

2P cosa = II cosju.

If 77 is still to remain the substitute of this system of

forces, whatever direction X may take on the system

being turned through any angle 6, we shall further

have

2P cos (a -f- #) = 77 cos (yu -f- tf),

or

(2P cosa— IIcos jj.) cosd— (2P sina — II sin/I) sind= 0.

If we put

2P cosa — 77 cos// == A,

— (lEPsina — TTsinyw) = B,

B
tanr =z ,

it follows that

^ costf + ^ sintf = VA^+~B^ sin (tf + r) = 0,

which equation can subsist for every d only on the con-

dition that

A = ^EP cosa — 77 cos// =
and

B = {^Psina — 77 sin//) = ;

whence results

7T cos// = 2P cosa

TJsinyu = 2Psina.

From these equations follow for 77 and // the deter-

minate values

Zr=l/[(27> sina) 2 + (2Pcosay]
and

2P sina
tan// = -^— .

^ZPcosa
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The actual Granting, therefore, that the effect of a force in every

deducibie
1

direction can be measured by its projection on that di-

o?he? sup- rection, then truly every system of forces acting at a
posmon.

p
-

nt
-

s replaCeable by a single force, determinate in

magnitude and direction. This reasoning does not hold,

however, if we put in the place of cos a any general func-

tion of an angle, cp (a). Yet if this be done, and we still

regard the resultant as determinate, we shall obtain for

cp(a), as may be seen, for example, from Poisson's

deduction, the form cos a. The experience that several

forces acting at a point are always, in every respect,

replaceable by a single force, is therefore mathemat-

ically equivalent to the principle of the parallelogram

of forces or to the principle of projection. The prin-

ciple of the parallelogram or of projection is, how-

ever, much easier reached by observation than the

General re- more general experience above mentioned by statical

marks
' observations. And as a fact, the principle of the par-

allelogram was reached earlier. It would require in-

deed an almost superhuman power of perception to

deduce mathematically, without the guidance of any

further knowledge of the actual conditions of the ques-

tion, the principle of the parallelogram from the gen-

eral principle of the equivalence of several forces to a

single one. We criticise accordingly in the deduction

of Bernoulli this, that that which is easier to observe

is reduced to that which is more difficult to observe.

This is a violation of the economy of science. Bernoulli

is also deceived in imagining that he does not proceed

from any fact whatever of observation.

An addi- We must further remark that the fact that the forces

sumption of are independent of one another, which is involved in
Bernoulli. ^ ^^ ^ their compOS { t ion?

'

1S another experience

which Bernoulli throughout tacitly employs. As long
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as we have to do with uniform or symmetrical systems

of forces, all equal in magnitude, each can be affected

by the others, even if they are not independent, only

to the same extent and in the same way. Given but

three forces, however, of which two are symmetrical

to the third, and even then the reasoning, provided

we admit that the forces may not be independent, pre-

sents considerable difficulties.

11. Once we have been led, directly or indirectly, Discussion

to the principle of the parallelogram of forces, once we acter of the

have perceived it, the principle is just as much an ob-
P° C1P e '

servation as any other. If the observation is recent, it

of course is not accepted with the same confidence as

old and frequently verified observations. We then seek

to support the new observation by the old, to demon-
strate their agreement. By and by the new observa-

tion acquires equal standing with the old. It is then

no longer necessary constantly to reduce it to the lat-

ter. Deduction of this character is expedient only in

cases in which observations that are difficult directly

to obtain can be reduced to simpler ones more easily

obtained, as is done with the principle of the parallel-

ogram of forces in dynamics.

12. The proposition of the parallelogram of forces Experimen-

has also been illustrated by experiments especially tfon of
S

the~

instituted for the purpose. An apparatus very well acomriv-
y

adapted to this end was contrived by Cauchy. The Cauchy.

centre of a horizontal divided circle (Fig. 37) is marked
by a pin. Three threads/,/',/", tied together at a

point, are passed over grooved wheels r, r', r", which

can be fixed at any point in the circumference of the

circle, and are loaded by the weights/, p', p". If three

equal weights be attached, for instance, and the wheels

placed at the marks of division o, 120, 240, the point at
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Experimen- which the strings are knotted will assume a position

!fon"f
S

the' just above the centre of the circle. Three equal forces
principle.

acting ^ angles of I2Q
o

?
accordingly, are in equilib-

rium.

Fig- 37-

If we wish to represent another and different case,

we may proceed as follows. We imagine any two'

forces/, q acting at any angle a, represent (Fig. 38)

them by lines, and construct on them as sides a paral-

lelogram. We supply, further, a force

equal and opposite to the resultant r.

The three forces /, q, — r hold each

other in equilibrium, at the angles vis-

ible from the construction. We now

place the wheels of the divided circle on

the points of division o, a, a -f /?, and

load the appropriate strings with the

weights /, q, r. The point at which the

strings are knotted will come to a position exactly

above the middle point of the circle.

Fig. 38.
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THE PRINCIPLE OF VIRTUAL VELOCITIES.

i. We now pass to the discussion of the principle The truth
x of the prin-

of virtual (possible) displacements.* The truth of cipie first
Vi J remarked

this principle was first remarked by Stevinus at the by stevinus

close of the sixteenth century in his investigations on

the equilibrium of pulleys and combinations of pulleys.

Stevinus treats combinations of pulleys in the same

way they are treated at the present day. In the case

* Termed in English the principle of "virtual velocities," this being the

original phrase {Vitesse virtuelle) introduced by John Bernoulli. See the

text, page 56. The word virtualis seems to have been the fabrication of Duns

Scotus (see the Century Dictionary, under virtual) ; but virtualiter was used

by Aquinas, and virtus had been employed for centuries to translate dbvafiig,

and therefore as a synonym for potentia. Along with many other scholastic

terms, virtual passed into the ordinary vocabulary of the English language.

Everybody remembers the passage in the third book of Paradise Lost,

" Love not the heav'nly Spirits, and how thir Love

Express they, by looks onely, or do they mix

Irradiance, virtual ox immediate touch? "

—

Milton.

So, we all remember how it was claimed before our revolution that America

had " znrtual representation " in parliament. In these passages, as in Latin,

virtual means : existing in effect, but not actually. In the same sense, the

word passed into French ; and was made pretty common among philosophers

by Leibnitz. Thus, he calls innate ideas in the mind of a child, not yet brought

to consciousness, " des connoissances virtuelles."

The principle in question was an extension to the case of more than two

forces of the old rule that "what a machine gains in power, it loses in velocity..'»

Bernoulli's modification reads that the sum of the products of the forces into

their virtual velocities must vanish to give equilibrium. He says, in effect :

give the system any possible and infinitesimal motion you please, and then

the simultaneous displacements of the points of application of the forces,

resolved in the directions of thoseforces, though they are not exactly velocities,

since they are only displacements in one time, are, nevertheless, virtually

velocities, for the purpose of applying the rule that what a machine gains in

power, it loses in velocity.

Thomson and Tait say :
" If the point of application of a force be dis-

placed through a small space, the resolved part of the displacement in the di-

rection of the force has been called its Virtual Velocity. This is positive or

negative according as the virtual velocity is in the same, or in the opposite,

direction to that of the force." This agrees with Bernoulli's definition which

may be found in Varignon's Nouvelle ?necanique, Vol. II, Chap, vs.— Trans.
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stevinus's a (Fig. 39) equilibrium obtains, when an equal weight P
tionsontheis suspended at each side, for reasons already familiar.
equilibrium

, . , . . - . n 1 j
of pulleys. In b, the weight P is suspended by two parallel cords,

Fig. 39.

each of which accordingly supports the weight P/2,

with which weight in the case of equilibrium the free

end of the cord must also be loaded. In c, P is sus-

pended by six cords, and the weighting of the free ex-

tremity with P/6 will accordingly produce equilibrium.

In d, the so-called Archimedean or potential pulley,* P
in the first instance is suspended by two cords, each

of which supports P/2 ; one of these two cords in turn

is suspended by two others, and so on to the end, so

that the free extremity will be held in equilibrium by

the weight P/S. If we impart to these assemblages

of pulleys displacements corresponding to a descent of

the weight P through the distance h, we shall observe

that as a result of the arrangement of the cords

the counterweight P 1 fa distance h in a

" << P/2 . n , " " 2/1 " b
1

\ will ascend {a << p/6 " << 6/1 " c

«< " P/Sj I" " S/i " d

* These terms are not in use in English.— Trans.
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OP

Fig. 40.

In a system of pulleys in equilibrium, therefore, His conciu-

i -1 r 1 • 1 • 1 i-i sions the
the products of the weights into the displacements germ of the

, . .
t

. TT . principle.
they sustain are respectively equal. (" Ut spatmm
agentis ad spatium patientis, sic potentia patientis ad

potentiam agentis."—Stevini, Hypomnemata, T. IV,

lib. 3, p. 172.) In this remark is contained the germ
of the principle of virtual displacements.

2. Galileo recognised the truth of the principle in Galileo's
recognition

another case, and that a somewhat more general one ;
of the prm-

, 1- • i-tii r^ cipleinthe
namely, in its application to the inclined plane. On case of the

__,. inclined
an inclined plane (Fig. 40), plane,

the length of which AB is

double the height BC, a load

Q placed on AB is held in

equilibrium by the load P act-

ing along the height BC, if

P= Q/2. If the machine be

set in motion, P= Q/2 will descend, say, the vertical

distance //, and Q will ascend the same distance // along

the incline AB. Galileo, now, allowing the phenom-

enon to exercise its full effect on his mind, perceives,

that equilibrium is determined not by the weights

alone but also by their possible approach to and reces-

sion from the centre of the earth. Thus, while Q/2 de-

scends along the vertical height the distance //, Q as-

cends h along the inclined length, vertically, however,

only J1J2 ; the result being that the products Q{Ji/2)

and (<2/2)/2 come out equal on both sides. The eluci-

dation that Galileo's observation affords and the light character

it diffuses, can hardly be emphasised strongly enough, observation

The observation is so natural and unforced, moreover,

that we admit it at once. What can appear simpler

than that no motion takes place in a system of heavy
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bodies when on the whole no heavy mass can descend.

Such a fact appears instinctively acceptable.

Comparison Galileo's conception of the inclined plane strikes

thatofste- us as much less ingenious than that of Stevinus, but

we recognise it as more natural and more profound. It

is in this fact that Galileo discloses such scientific great-

ness : that he had the intellectual audacity to see, in a

subject long before investigated, more than his prede-

cessors had seen, and to trust to his own perceptions.

With the frankness that was characteristic of him he

unreservedly places before the reader his own view,

together with the considerations that led him to it.

The Tom- 3. Torricelli, by the employment of the notion of
cellian . . ,, 1 r^ 1-1 1

•
1

form of the << centre of gravity," has put Galileo's principle in a
pnncip e. ^m -m wi1

'

1c \1l j t appeals still more to our instincts, but

in which it is also incidentally applied by Galileo him-

self. According to Torricelli equilibrium exists in a

machine when, on a displacement being imparted to it,

the centre of gravity of the weights attached thereto

cannot descend. On the supposition of a displacement

in the inclined plane last dealt with, P, let us say, de-

scends the distance //, in compensation wherefor Q
vertically ascends h. sin a. Assuming that the centre

of gravity does not descend, we shall have

^h-QJr^a _ h^ a = QP+Q
or

P=Qsma = Q :iF
.

If the weights bear to one another some different pro-

portion, then the centre of gravity can descend when a

displacement is made, and equilibrium will not obtain.

We expect the state of equilibrium instinctively, when

the centre of gravity of a system of heavy bodies can-
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not descend. The Torricellian form of expression, how-

ever, contains in no respect more than the Galilean.

4. As with systems of pulleys and with the inclined ^**v£f

plane, so also the validity of the principle of virtual Seprind-

displacements is easily demonstrable for the other ma- other ma-

chines : for the lever, the wheel and axle, and the rest.

In a wheel and axle, for instance, with the radii R, r

and the respective weights P, Q, equilibrium exists,

as we know, when PR= Qr. If we turn the wheel

and axle through the angle a, P will descend Pa, and

Q will ascend ra. According to the conception of

Stevinus and Galileo, when equilibrium exists, P. Ra
z=z Q. ra, which equation expresses the same thing as

the preceding one.

5. When we compare a system of heavy bodies ^T^crite-^

which motion is taking place, with a similar system state of .^

which is in equilibrium, the question forces itself upon

us : What constitutes the difference of the two cases?

What is the factor operative here that determines mo-

tion, the factor that disturbs equilibrium,—the factor

that is present in the one case and absent in the other?

Having put this question to himself, Galileo discovers

that not only the weights, but also the distances of

their vertical descents (the amounts of their vertical

displacements) are the factors that determine motion.

Let us call P, P\ P" . . . the weights of a system of

heavy bodies, and //, ti , h" . . . their respective, simul-

taneously possible vertical displacements, where dis-

placements downwards are reckoned as positive, and

displacements upwards as negative. Galileo finds

then, that the criterion or test of the state of equilib-

rium is contained in the fulfilment of the condition

Ph + Fh' + P" h" + . . . = 0. The sum Ph -f Fti

_|_ p"h"-\- ... is the factor that destroys equilibrium,



54 THE SCIENCE OF MECHANICS.

the factor that determines motion. Owing to its im-

portance this sum has in recent times been character-

ised by the special designation work.

There is no 6. Whereas the earlier investigators, in the compari-
necessity in ... .

our choice son of cases of equilibrium and cases of motion, directed
of the cri-

. .

teria. their attention to the weights and their distances from
the axis of rotation and recognised the statical mo-

ments as the decisive factors involved, Galileo fixes

his attention on the weights and their distances of de-

scent and discerns 7vork as the decisive factor involved.

It cannot of course be prescribed to the inquirer

what mark or criterion of the condition of equilibrium

he shall take account of, when several are present to

choose from. The result alone can determine whether
his choice is the right one. But if we cannot, for rea-

And ail are sons already stated, regard the significance of the stat-

fromthe ical moments as given independently of experience, as
same , . , r . , . .. .

source. something sell-evident, no more can we entertain this

view with respect to the import of work. Pascal errs,

and many modern inquirers share this error with him,

when he says, on the occasion of applying the principle

of virtual displacements to fluids: " Etant clair que c'est

la meme chose de faire faire un pouce de chemin a cent

livres d'eau, que de faire faire cent pouces de chemin
a une livre d'eau." This is correct only on the suppo-

sition that we have already come to recognise work as

the decisive factor ; and that it is so is a fact which
experience alone can disclose.

illustration If we have an equal-armed, equally-weighted lever
of the pre- .

'. fe

ceding re- before us, we recognise the equilibrium of the lever as
marks. . .

the only effect that is uniquely determined, whether we
regard the weights and the distances or the weights

and the vertical displacements as the conditions that

determine motion. Experimental knowledge of this
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or a similar character must, however, in the necessity of

the case precede any judgment of ours with regard to

the phenomenon in question. The particular way in

wThich the disturbance of equilibrium depends on the

conditions mentioned, that is to say, the significance

of the statical moment {PL) or of the work (P/i), is

even less capable of being philosophically excogitated

than the general fact of the dependence.

7. When two equal weights with equal and op- Reduction
: . , , ofthegen-

posite possible displacements are opposed to each erai case of

. . , .... the princi-

other, we recognise at once the subsistence of equilib- pie to the
simpler and

rium. We might now be tempted to reduce the more special case

general case of the weights P, P' with the capacities of

displacement /i,/i\ where

0-
+ 1

+ 2

+ i

+ 4

mmm
f

-3

-2

-1

v

Fig. 41.

Ph = P'h', to the sim-

pler case. Suppose we
have, for example, (Fig.

41) the weights 3 P and

4/ona wheel and axle

with the radii 4 and 3.

We divide the weights

into equal portions of the

definite magnitude P, which we designate by a, b, c,

d, e, /, g. We then transport a, b, c to the level -j- 3,

and d, e, f to the level — 3. The weights will, of

themselves, neither enter on this displacement nor

will they resist it. We then take simultaneously the

weight
ĉ

at the level and the weight a at the level

-f- 3, push the first upwards to — 1 and the second

downwards to -f- 4, then again, and in the same way,

g to — 2 and b to -f- 4, g to — 3 and c to -f- 4. To all

these displacements the weights offer no resistance,

nor do they produce them of themselves. Ultimately,

however, a, b, c (or 5P) appear at the level -J- 4 and
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The gen- d, e, /, g (or \P) at the level — 3. Consequently,
erahsation. ^.^ respect ajso to t^e last-mentioned total displace-

ment, the weights neither produce it of themselves

nor do they resist it ; that is to say, given the ratio of

displacement here specified, and the weights will be

in equilibrium. The equation 4 . 3^— 3 • 4^= ° is >

therefore, characteristic of equilibrium in the case as-

sumed. The generalisation {Ph — P'ti = 0) is ob-

vious.

Thecondi- If we carefully examine the reasoning of this case,

chTact
n
e

d
r we shall quite readily perceive that the inference in-

ence.
einfer>olved cannot be drawn unless we take for granted

that the order of the operations performed and the path

by which the transferences are effected, are indifferent,

that is unless we have previously discerned that work

is determinative. We should commit, if we accepted

this inference, the same error that Archimedes com-

mitted in his deduction of the law of the lever ;
as has

been set forth at length in a preceding section and

need not in the present case be so exhaustively dis-

cussed. Nevertheless, the reasoning we have pre-

sented is useful, in the respect that it brings palpably

home to the mind the relationship of the simple and

the complicated cases.

Thenniver- 8. The universal applicability of the principle of

biiuT^Mhe virtual displacements to all cases of equilibrium, was

firstper-
6

perceived by John Bernoulli ;
who communicated his

5oh
V
n
e
Be
b
r
y discovery to Varignon in a letter written in 171 7. We

nouIli
' will now enunciate the principle in its most general

form. At the points A, B, C . . . (Fig. 42) the forces

P, P', P" . . • are applied. Impart to the points any

infinitely small displacements v, v , v" . . . compatible

with the character of the connections of the points (so-

called virtual displacements), and construct the pro-
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jections /,/,/' of these displacements on the direc- Genera^

tions of the forces. These projections we consider of the pre-

positive when they fall in A ^ pt

the direction of the force,

and negative when they fall

in the opposite direction.

The products Pp, P'p',

P"p", . - • are called virtual

moments, and in the two

cases just mentioned have Fig. 42.

contrary signs. Now, the principle asserts, that for the

case of equilibrium Pp + P'p' + P"p" + . . . = 0, or

more briefly 2Pp = 0.

q Let us now examine a few points more in detail. Detailed
-7 -11 examina-

Previous to Newton a force was almost universally tion of the
principle.

conceived simply as the pull or the pressure of a heavy

body. The mechanical researches of this period dealt

almost exclusively with heavy bodies. When, now,

in the Newtonian epoch, the generalisation of the idea

of force was effected, all mechanical principles known

to be applicable to heavy bodies could be transferred

at once to any forces whatsoever. It was possible to

replace every force by the pull of a heavy body on a

string. In this sense we may also apply the principle

of virtual displacements, at first discovered only for

heavy bodies, to any forces whatsoever.

Virtual displacements are displacements consistent Definition
r " tr j-

f virtual

with the character of the connections of a system and dispiace-

with one another. If, for example, the two points of

a system, A and B, at which forces act, are connected

(Fig. 43> 1) by a rectangularly bent lever, free to re-

volve about C, then, if CB=2CA, all virtual dis-

placements of B and A are elements of the arcs of cir-

cles having C as centre ; the displacements of B are
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always double the displacements of A, and both are in

every case at right angles to each other. If the points

A , B (Fig. 43, 2) be connected by a thread of the length

r /, adjusted to slip through

^ r stationary rings at C and D,

I \ then all those displacements

^C 2 °* ^ anc* ^ are v irtua ^ m
Fig. 43. which the points referred to

move upon or within two spherical surfaces described

with the radii r
±
and r

2
about C and D as centres,

where r
x -f- r

2 -f- CD =±= I.

The reason The use of infinitely small displacements instead of

of infinitelyfinite displacements, such as Galileo assumed, is justi-

piacements. fied by the following consideration. If two weights

are in equilibrium on an inclined plane (Fig. 44), the

equilibrium will not be disturbed if the inclined plane,

at points at which it is not in immediate contact with

the bodies considered, passes into

a surface of a different form. The
essential condition is, therefore,

the momentary possibility of dis-

Fig. 44. placement in the momentary con-

figuration of the system. To judge of equilibrium we
must assume displacements vanishingly small and such

only ; as otherwise the system might be carried over

into an entirely different adjacent configuration, for

which perhaps equilibrium would not exist.

a Hmita- That the displacements themselves are not decisive

but only the extent to which they occur in the direc-

tions of the forces, that is only their projections on the

lines of the forces, was, in the case of the inclined plane,

perceived clearly enough by Galileo himself.

With respect to the expression of the principle, it

will be observed, that no problem whatever is presented

tion.



THE PRINCIPLES OF STATICS. 59

if all the material points of the system on which forces General re-
* msrks

act, are independent of each other. Each point thus

conditioned can be in equilibrium only in the event

that it is not movable in the direction in which the force

acts. The virtual moment of each such point vanishes

separately. If some of the points be independent of

each other, while others in their displacements are de-

pendent on each other, the remark just made holds

good for the former ; and for the latter the fundamental

proposition discovered by Galileo holds, that the sum
of their virtual moments is equal to zero. Hence, the

sum-total of the virtual moments of all jointly is equal

to zero.

10. Let us now endeavor to get some idea of the Examples,

significance of the principle, by the consideration of a

few simple examples that cannot be

dealt with by the ordinary method

of the lever, the inclined plane, and

the like.

The differential pulley of Wes-

ton (Fig. 45) consists of two coax-

ial rigidly connected cylinders of

slightly different radii r
x
and r

2

<r
1

. A cord or chain is passed

round the cylinders in the manner

indicated in the figure. If we pull

in the direction of the arrow with

the force P, and rotation takes place Fi g- 45.

through the angle cp, the weight Q attached below will

be raised. In the case of equilibrium there will exist

between the two virtual moments involved the equa-

tion

.('i
— r

a )
cp = Pr

x <p, or P= Q
2r*
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A suspend-
ed wheel
and axle.

A wheel and axle of weight Q (Fig. 46), which on

the unrolling of a cord to which the weight P is at-

tached rolls itself up on a second cord

wound round the axle and rises, gives

for the virtual moments in the case of

equilibrium the equation
Qr

P{R — r)q)=Qrcp, or P=
R-

A double

In the particular case R — r= 0, we

must also put, for equilibrium, Qr= 0, or,

for finite values of r, Q= 0. In reality the

string behaves in this case like a loop in

which the weight Q is placed. The lat-

ter can, if it be different from zero, continue to roll itself

downwards on the string without moving the weight P.

If, however, when R = r, we also put Q = 0, the re-

sult will be P=%, an indeterminate value. As a mat-

ter of fact, every weight P holds the apparatus in equi-

librium, since when R= r none can possibly descend.

A double cylinder (Fig. 47) of the radii r, R lies with

a
y
no
n
dzon-

n
friction on a horizontal surface, and a force Q is brought

tal surface.
to bear Qn ^ str ing at _

tached to it. Calling the re-

sistance due to friction P,

equilibrium exists when
^^mZ^^m^^Z^ P= (R- r/R) Q. UP>

Fi ^- 47- (R— rjR^ £ ?
the cylinder,

on the application of the force, will roll itself up on

the string.

Roberval's Balance (Fig. 48) consists of a paral-

lelogram with variable angles, two opposite sides of

which, the upper and lower, are capable of rotation

about their middle points A, B. To the two remaining

sides, which are always vertical, horizontal rods are

Roberval's
balance.
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fastened. If from these rods we suspend two equal

weights P, equilibrium will subsist independently of

the position of the points

of suspension, because on

displacement the descent

of the one weight is always

equal to the ascent of the

other.

At three fixed points A,

B, C (Fig. 49) let pulleys

be placed, over which three strings are passed loaded three knot-

with equal weights and knotted at O. In what posi-
te stnngs

tion of the strings will equilibrium exist? We will call

the lengths of the three strings AO = s
1 , BO = s

2 ,

Fig. 48.

Fig. 49. Fig- 50.

CO: ,. To obtain the equation of equilibrium, let

us displace the point O in the directions s
2
and s

s
the

infinitely small distances ds
2
and Ss

3 , and note that by

so doing every direction of displacement in the plane

ABC (Fig. 50) can be produced. The sum of the vir-

tual moments is

Pds
2

+ ^3
Pds

2
cos (a -\- ft)

PSs^ cos fi -f- PSs^ cos (a -\- ft)

P3s
2
cos a = 0,

[1 — cos a -f- cos (a -f ft)] 8 s
2 -f- [1 — cos ft

-f cos(a + ft)~]
ds

3
= 0.

But since each of the displacements ds
2 , Ss

z
is ar-
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bitrary, and each independent of the other, and may by

themselves be taken = 0, it follows that

1 — cos a -f cos (or -f- fi) =
1 _ cos/5 + cos [a + /3) = 0.

Therefore
cos a= cos (3,

and each of the two equations may be replaced by

1 — cos a -\- cos 2a= 0;

or cos a= \,

wherefore a + /?=120°.

Remarks on Accordingly, in the case of equilibrium, each of the

ingcase?
6

strings makes with the others angles of 120 ; which is,

moreover, directly obvious, since three equal forces can

be in equilibrium only when such an arrangement ex-

ists. This once known, we may find the position of

the point O with respect to ABC in a number of dif-

ferent ways. We may proceed for instance as follows.

We construct on AB, BO, CA, severally, as sides,

equilateral triangles. If we describe circles about these

triangles, their common point of intersection will be

the point O sought ; a result which easily follows from -

the well-known relation of the angles at the centre and

circumference of circles.

The case of A bar OA (Fig. 51) is revolvable about O in the

voivabie plane of the paper and makes with a fixed straight line

OX the variable angle

a. At A there is ap-

plied a force P which

makes with OX the

angle y, and at B, on

Fig. 51. a ring displaceable

along the length of the bar, a force Q, making with

OX the angle ft. We impart to the bar an infinitely
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small rotation, in consequence of which B and A move The case of

• a bar re-

forward the distances Ss and Ss. at right angles to OA, voivabie
about one

and we also displace the ring the distance dr along the of its ex-
tremitieSt

bar. The variable distance OB we will call r, and we
will let OA =a. For the case of equilibrium we have

then

Qdr cos (/? — a) + QSs sin (/?_«) +
Pds

1
sin (a — y) = 0.

As the displacement dr has no effect whatever on

the other displacements, the virtual moment therein

involved must, by itself, = 0, and since dr may be of

any magnitude we please, the coefficient of this virtual

moment must also = 0. We have, therefore,

Q cos (JS—a) = 0,

or when Q is different from zero,

/3— a=90°.

Further, in view of the fact that ds
1
=(a/r) ds

y
we

also have

rQ sin (/? — a) -f~ a P sin (a — y) = 0,

or since sin (fi
— <x) = i,

rQ -f- aP sin (a — y) = ;

wherewith the relation of the two forces is obtained.

n. An advantage, not to be overlooked, which Every gen-

every general principle, and therefore also the prin- cipie
P
S^

ciple of virtual displacements, fur- j
1 f// economy of

nishes, consists in the fact that it

saves us to a great extent the ne- 1

cessity of considering every new par- « i

ticular case presented. In the posses-

sion of this principle we need not, for Fig. 52.

example, trouble ourselves about the details of a ma-

chine. If a new machine say were so enclosed in a

* economy
\k thought.
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box (Fig. 52), that only two levers projected as points

of application for the force P and the weight P', and

we should find the simultaneous displacements of these

levers to be // and //', we should know immediately that

in the case of equilibrium P/i = P' h' , whatever the

construction of the machine might be. Every principle

of this character possesses therefore a distinct econom-

ical value.

Further re- 12. We return to the general expression of the prin-

the general ciple of virtual displacements, in order to add a few
expression -

of the prin-
ciple.

Fig. 53-

further remarks. If

at the points A, B,

C . . . . the forces

P, P', P" . . . . act,

and p, p\ p" ....

are the projections

of infinitely small

mutually compatible displacements, we shall have for

the case of equilibrium

_PP + jP >j,> + P>p" + . . .=0.

If we replace the forces by strings which pass over

pulleys in the directions of the forces and attach thereto

the appropriate weights, this expression simply as-

serts that the centre of gravity of the system of weights

as a whole cannot descend. If, however, in certain dis-

placements it were possible for the centre of gravity

to rise, the system would still be in equilibrium, as the

heavy bodies would not, of themselves, enter on any

such motion. In this case the sum above given would

prevCfus
116

be negative, or less than zero. The general expression

c2nd!ao
n
n
0f

of the condition of equilibrium is, therefore,

Pp + P'p' + P"p" + . . . < 0.

When for every virtual displacement there exists

Modifica-
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another equal and opposite to it, as is the case for ex-

ample in the simple machines, we may restrict ourselves

to the upper sign, to the equation. For if it were pos-

sible for the centre of gravity to ascend in certain

displacements, it would also have to be possible, in

consequence of the assumed reversibility of all the vir-

tual displacements, for it to descend. Consequently,

in the present case, a possible rise of the centre of

gravity is incompatible with equilibrium.

The question assumes a different aspect, however, Thecondi-

when the displacements are not all reversible. Two the sum ofill- 1
the virtual

bodies connected together by strings can approach moments

each other but cannot recede from each other beyond equal to or

Ail* 11 i-i *ess tnan
the length of the strings. A body is able to slide or zero.

roll on the surface of another body ; it can move away

from the surface of the second body, but it cannot

penetrate it. In these cases, therefore, there are dis-

placements that cannot be reversed. Consequently,

for certain displacements a rise of the centre of gravity

may take place, while the contrary displacements, to

which the descent of the centre of gravity corresponds,

are impossible. We must therefore hold fast to the

more general condition of equilibrium, and say, the sum
of the virtual moments is equal to or less than zero.

1 3. Lagrange in his Analytical Mechanics attempted The La-

a deduction of the principle of virtual displacements, deduction
• 1 a 1

• of theprin-
which we will now consider. At the points A, B, cipie.

C . . . . (Fig. 54) the forces P, P f

, P" . . . . act. We
imagine rings placed at the points in question, and

other rings A', B', C . . . . fastened to points lying in

the directions of the forces. We seek some common
measure Q/2 of the forces P, P\ P" .... that enables

us to put

:
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Effected by
means of a
set of pul-
leys and a
single
weight.

Li

where n, n', n" . . . . are whole numbers. Further, we

make fast to the ring A 9

a string, carry this string back

and forth n times between A' and A, then through £',

n' times back and forth between B f and B, then through

C, n" times back and forth between C and C, and,

finally, let it drop at C, attaching to it there the weight

Q/2. As the string has, now, in all its parts the ten-

sion (2/2, we replace by these ideal pulleys all the

forces present in the system by the single force Q/2.

If then the virtual (possible) displacements in any given

configuration of the system are such that, these dis-

placements occurring, a descent of the weight Q/2 can

take place, the weight will actually descend and pro-

duce those displacements, and equilibrium therefore

will not obtain. But on the other hand, no motion

will ensue, if the displacements leave the weight Q/2

in its original position, or raise it. The expression of

this condition, reckoning the projections of the virtual

displacements in the directions of the forces positive,
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and having regard for the number of the turns of the

string in each single pulley, is

2np + 2np' + 2n"p" + . . . < 0.

Equivalent to this condition, however, is the ex-

pression

2n fp + 2*' | / + 2n" \p" + . . . < 0,

or

Pp + PS + F'P" + • • • < °-

14. The deduction of Lagrange, if stripped of theThecon-"
vincing fea-

rather odd fiction of the pulleys, really possesses con- turesof La-
. . grange's

vincing features, due to the fact that the action of a deduction,

single weight is much more immediate to our expe-

rience and is more easily followed than the action of

several weights. Yet it is not proved by the Lagrangian

deduction that work is the factor determinative of the

disturbance of equilibrium, but is, by the employment

of the pulleys, rather assumed by it. As a matter of

fact every pulley involves the fact enunciated and rec-

ognised by the principle of virtual displacements. The

replacement of all the forces by a single weight that

does the same work, presupposes a knowledge of the

import of wTork, and can be proceeded with on this as-

sumption alone. The fact that some certain cases are it is not,
r

. however, a

more familiar to us and more immediate to our expe- proof,

rience has as a necessary result that we accept them

without analysis and make them the foundation of our

deductions without clearly instructing ourselves as to

their real character.

It often happens in the course of the development

of science that a new principle perceived by some in-

quirer in connection with a fact, is not immediately

recognised and rendered familiar in its entire generality.
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Theexpe- Then, every expedient calculated to promote these

ployed
\™~ ends, is, as is proper and natural, called into service.

nlw
P
priiT-

U
All manner of facts, in which the principle, although

ciples
' contained in them, has not yet been recognised by in-

quirers, but which from other points of view are more

familiar, are called in to furnish a support for the new

conception. It does not, however, beseem mature

science to allow itself to be deceived by procedures of

this sort. If, throughout all facts, we clearly sec and dis-

cern a principle which, though not admitting of proof,

can yet be known to prevail, we have advanced much

farther in the consistent conception of nature than if

we suffered ourselves to be overawed by a specious

value of the demonstration. If we have reached this point of view,

proof?
ngian

we shall, it is true, regard the Lagrangian deduction

with quite different eyes
;
yet it will engage neverthe-

less our attention and interest, and excite our satis-

faction from the fact that it makes palpable the simi-

larity of the simple and complicated cases.

15. Maupertuis discovered an interesting proposi-

tion relating to equilibrium, which he communicated

to the Paris Academy in 1740 under the name of the

" Loi de repos." This principle was more fully dis-

cussed by Euler in 1751 in the Proceedings of the

Berlin Academy. If we cause infinitely small displace-

TheLoide merits in any system, we produce a sum of virtual mo-
repos ' ments Pp + P'p' + P"p" +...., which only reduces

to zero in the case of equilibrium. This sum is the

work corresponding to the displacements, or since for

infinitely small displacements it is itself infinitely small,

the corresponding element of work. If the displace-

ments are continuously increased till a finite displace-

ment is produced, the elements of the work will, by

summation, produce a finite amount of work. So, if we
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start from any given initial configuration of the system statement^

and pass to any given final configuration, a certain cipie.

amount of work will have to be done. Now Maupertuis

observed that the work done when a final configura-

tion is reached which is a configuration of equilibrium,

is generally a maximum or a minimum ;
that is, if we

carry the system through the configuration of equilib-

rium the work done is previously and subsequently

less or previously and subsequently greater than at the

configuration of equilibrium itself. For the configura-

tion of equilibrium

Pp + P'P' + P"P" + • • • = 0,

that is, the element of the work or the differential (more

correctly the variation) of the work is equal to zero.

If the differential of a function can be put equal to

zero, the function has generally a maximum or mini-

mum value.

16 We can produce a very clear representation to Graphical
r

.
illustration

the eye of the import of Maupertuis's principle.
°ort ofThe

We imagine the forces of a system replaced by principle.

Lagrange's pulleys with the weight Q/2. We suppose

that each point of the system is restricted to movement

on a certain curve and that the motion is such that

when one point occupies a definite position on its curve

all the other points assume uniquely determined po-

sitions on their respective curves. The simple ma-

chines are as a rule systems of this kind. Now, while

imparting displacements to the system, we may carry

a vertical sheet of white paper horizontally over the

weight Q/2, while this is ascending and descending

on a vertical line, so that a pencil which it carries shall

describe a curve upon the paper (Fig. 55). When the

pencil stands at the points a, c, dot the curve, there are,
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interpreta- we see, adjacent positions in the system of points at

diagram. which the weight Q/2 will stand higher or lower than in

the configuration given. The weight will then, if the

system be left to itself, pass into this lower position and

Fig. 55-

displace the system with it. Accordingly, under condi-

tions of this kind, equilibrium does not subsist. If

the pencil stands at e, then there exist only adjacent

configurations for which the weight Q/2 stands higher.

But of itself the system will not pass into the last-

named configurations. On the contrary, every dis-

placement in such a direction, will, by virtue of the

tendency of the weight to move downwards, be re-

versed. Stable equilibrium, therefore, is the condition

Stable equi- that corresponds to the lowest position of the weight or to
librium.

. .. f /
a ?naximum of work done in the system. If the pencil

stands at b, we see that every appreciable displace-

ment brings the weight Q/2 lower, and that the weight

therefore will continue the displacement begun. But,

assuming infinitely small displacements, the pencil

moves in the horizontal tangent at b, in which event

the weight cannot descend. Therefore, unstable equi-

Unstabie Ubriiim is the state that corresponds to the highest position
equi

1
rmm^ ^^ weight Q/2, or to a minimum of work done in the

system. It will be noted, however, that conversely
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every case of equilibrium is not the correspondent of

a maximum or a minimum of work performed. If the

pencil is at/, at a point of horizontal contrary flexure,

the weight in the case of infinitely small displace-

ments neither rises nor falls. Equilibrium exists, al-

though the work done is neither a maximum nor a

minimum. The equilibrium of this case is the so-

called mixed equilibrium *
: for some disturbances it is Mixed equi-

^ libnum.

stable, for others unstable. Nothing prevents us from

regarding mixed equilibrium as belonging to the un-

stable class. When the pencil stands at g, where the

curve runs along horizontally a finite distance, equi-

librium likewise exists. Any small displacement, in

the configuration in question, is neither continued nor

reversed. This kind of equilibrium, to which likewise

neither a maximum nor a minimum corresponds, is

termed \neutral or] indifferent. If the curve described Neutral

by (2/2 has a cusp pointing upwards, this indicates a
eqmi rmm

minimum of work done but no equilibrium (not even

unstable equilibrium). To a cusp pointing downwards

a maximum and stable equilibrium correspond. In the

last named case of equilibrium the sum of the virtual

moments is not equal to zero, but is negative.

17. In the reasoning just presented, we have as- xhepreced-
r • , r ^ ing illustra-

sumed that the motion of a point ot a system on one tion applied

1 • r 11 .i ,1 •
i r by analogy

curve determines the motion ot all the other points oi t0 moredif-
, . . /t^-, i-i -, ficult cases.

the system on their respective curves. I he movability

of the system becomes multiplex, however, when each

point is displaceable on a surface, in a manner such

that the position of one point on its surface determines

This term is not used in English, because our writers hold that no

equilibrium is conceivable which is not stable or neutral for some possible

displacements. Hence what is called mixed equilibrium in the text is called

unstable equilibrium by English writers, who deny the existence of equilibrium

unstable in every respect.— Trans.
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uniquely the position of all the other points on their

surfaces. In this case, we are not permitted to consider

the curve described by (2/2, but are obliged to picture

to ourselves a surface described by Q/2. If, to go a

step further, each point is movable throughout a space,

we can no longer represent to ourselves in a purely geo-

metrical manner the circumstances of the motion, by

means of the locus of Q/2. In a correspondingly higher

degree is this the case when the position of one of the

points of the system does not determine conjointly all

the other positions, but the character of the system's

motion is more multiplex still. In all these cases, how-

ever, the curve described by Q/2 (Fig. 55) can serve

us as a symbol of the phenomena to be considered. In

these cases also we rediscover the Maupertuisian pro-

positions.

Further ex- We have also supposed, in our considerations up to

thTsame this point, that constant forces, forces independent of

the position of the points of the system, are the forces

that act in the system. If we assume that the forces

do depend on the position of the points of the system

(but not on the time), we are no longer able to conduct

our operations with simple pulleys, but

must devise apparatus the force active in

/^ \ which, still exerted by Q/2, varies with the

J
A displacement : the ideas we have reached,

( / however, still obtain. The depth of the

^^ ^y descent of the weight Q/2 is in every case

the measure of the work performed, which

is always the same in the same configura-

Fig- 56. tion of the system and is independent of

the path of transference. A contrivance which would

develop by means of a constant weight a force varying

with the displacement, would be, for example, a wheel
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and axle (Fig. 56) with a non-circular wheel. It would

not repay the trouble, however, to enter into the de-

tails of the reasoning indicated in this case, since we

perceive at a glance its feasibility.

18. If we know the relation that subsists between The prin-
ciple ot

the work done and the so-called vis viva of a sys- Courtivron.

tern, a relation established in dynamics, we arrive

easily at the principle communicated by Courtivron in

1749 to the Paris Academy, which is this: For the

configuration of
S
^ ,^ equilibrium, at which the

b unstable ^

work done is a
max

!

mum
the vis viva of the system,

minimum'

in motion, is also a
max

!

mu
in its transit through

' minimum
these configurations.

19. A heavy, homogeneous triaxial ellipsoid resting^^^
on a horizontal plane is admirably adapted to illustrate ous kinds of

r
.

. equilibrium

the various classes of equilibrium. When the ellip-

soid rests on the extremity of its smallest axis, it is in

stable equilibrium, for any displacement it may suffer

elevates its centre of gravity. If it rest on its longest

axis, it is in unstable equilib-

rium. If the ellipsoid stand on

its mean axis, its equilibrium is

mixed. A homogeneous sphere

or a homogeneous right cylin-

der on a horizontal plane illus- Fi s- 57.

trates the case of indifferent equilibrium. In Fig. 57

we have represented the paths of the centre of gravity

of a cube rolling on a horizontal plane about one of its

edges. The position a of the centre of gravity is the

position of stable equilibrium, the position b, the posi-

tion of unstable equilibrium.
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The eaten- 20. We will now consider an example which at

first sight appears very complicated but is elucidated

at once by the principle of virtual displacements. John

and James Bernoulli, on the occasion of a conversa-

tion on mathematical topics during a walk in Basel,

lighted on the question of what form a chain would

take that was freely suspended and fastened at both

ends. They soon and easily agreed in the view that

the chain would assume that form of equilibrium at

which its centre of gravity lay in the lowest possible

position. As a matter of fact we really do perceive

that equilibrium subsists when all the links of the chain

have sunk as low as possible, when none can sink lower

without raising in consequence of the connections of

the system an equivalent mass equally high or higher.

When the centre of gravity has sunk as low as it pos-

sibly can sink, when all has happened that can happen,

stable equilibrium exists. The physical part of the

problem is disposed of by this consideration. The de-

termination of the curve that has the lowest centre of

gravity for a given length between the two points A,

B, is simply a mathematical problem. (See Fig. 58.)

Theprinci- 21. Collecting all that has been presented, we see,

piytherec- that there is contained in the principle of virtual dis-

a
g
fact.

on
° placements simply the recognition of a fact that was

instinctively familiar to us long previously, only that

we had not apprehended it so precisely and clearly.

This fact consists in the circumstance that heavy

bodies, of themselves, move only downwards. If sev-

eral such bodies be joined together so that they can

suffer no displacement independently of each other,

they will then move only in the event that some heavy

mass is on the whole able to descend, or as the prin-

ciple, with a more perfect adaptation of our ideas to
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Fig. 58.
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what this the facts, more exactly expresses it, only in the event

that work can be performed. If, extending the notion

of force, we transfer the principle to forces other than

those due to gravity, the recognition is again con-

tained therein of the fact that the natural occurrences

in question take place, of themselves, only in a definite

sense and not in the opposite sense. Just as heavy

bodies descend downwards, so differences of tempera-

ture and electrical potential cannot increase of their

own accord but only diminish, and so on. If occur-

rences of this kind be so connected that they can take

place only in the contrary sense, the principle then es-

tablishes, more precisely than our instinctive appre-

hension could do this, the factor work as determinative

and decisive of the direction of the occurrences. The
equilibrium equation of the principle may be reduced

in every case to the trivial statement, that when noth-

ing can happen nothing does happen.

Theprin- 22. It is important to obtain clearly the perception,

Hghtof
1 e

that we have to deal, in the case of all principles,

view. merely with the ascertainment and establishment of a

fact. If we neglect this, we shall always be sensible

of some deficiency and will seek a verification of the

principle, that is not to be found. Jacobi states in his

Lectures on Dynamics that Gauss once remarked that

Lagrange's equations of motion had not been proved,

but only historically enunciated. And this view really

seems to us to be the correct one in regard to the prin-

ciple of virtual displacements.

The differ- The task of the early inquirers, who lay the foun-

eariy

a
andCf dations of any department of investigation, is entirely

inqufrers^n different from that of those who follow. It is the busi-

me
y
nt.

epart
"ness of the former to seek out and to establish the

facts of most cardinal importance only; and, as history
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teaches, more brains are required for this than is gen-

erally supposed. When the most important facts are

once furnished, we are then placed in a position to

work them out deductively and logically by the meth-

ods of mathematical physics; we can then organise the

department of inquiry in question, and show that in the

acceptance of some one fact a whole series of others is

included which were not to be immediately discerned

in the first. The one task is as important as the other.

We should not however confound the one with the

other. We cannot prove by mathematics that nature

must be exactly what it is. But we can prove, that

one set of observed properties determines conjointly

another set which often are not directly manifest.

Let it be remarked in conclusion, that the princi- Every gen-....... ... . . eral princi-

ple 01 virtual displacements, like every general pnn- pie brings
. . , . . . . , , ... ..... . . with it ciis-

Ciple, brings with it, by the insight which it furnishes, iiiusion-

disillusionment as well as elucidation. It brings with well as eiu-

...... . . ... cidation.
it disillusionment to the extent that we recognise in it

facts which were long before known and even instinct-

ively perceived, our present recognition being simply

more distinct and more definite ; and elucidation, in

that it enables us to see everywhere throughout the

most complicated relations the same simple facts.

RETROSPECT OF THE DEVELOPMENT OF STATICS.

i. Having passed successively in review the prin- Review of

ciples of statics, we are now in a position to take a whole,

brief supplementary survey of the development of the

principles of the science as a whole. This development,

falling as it does in the earliest period of mechanics,

—the period which begins in Grecian antiquity and
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reaches its close at the time when Galileo and his

younger contemporaries were inaugurating modern me-

chanics,—illustrates in an excellent manner the pro-

cess of the formation of science generally. All con-

ceptions, all methods are here found in their simplest

form, and as it were in their infancy. These beginnings

The origin point unmistakably to their origin in the experiences of
of science. , , _... •

.

c , , • *-\

the manual arts. To the necessity of putting these ex-

periences into communicable form and of disseminating

them beyond the confines of class and craft, science

owes its origin. The collector of experiences of this

kind, who seeks to preserve them in written form, finds

before him many different, or at least supposably differ-

ent, experiences. His position is one that enables him

to review these experiences more frequently, more vari-

ously, and more impartially than the individual work-

ingman, who is always limited to a narrow province.

The facts and their dependent rules are brought into

closer temporal and spatial proximity in his mind and

writings, and thus acquire the opportunity of revealing

The econo- their relationship, their connection, and their gradual

Sunicat^n. transition the one into the other. The desire to sim-

plify and abridge the labor of communication supplies

a further impulse in the same direction. Thus, from

economical reasons, in such circumstances, great num-

bers of facts and the rules that spring from them are

condensed into a system and comprehended in a single

expression.

The gene- 2. A collector of this character has, moreover, op-

ter of pSn- portunity to take note of some new aspect of the facts
cip es.

|3efore him—G f some aspect which former observers

had not considered. A rule, reached by the observation

of facts, cannot possibly embrace the entire fact, in all

its infinite wealth, in all its inexhaustible manifoldness

;
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on the contrary, it can furnish only a rough outline of

the fact, one-sidedly emphasising the feature that is of

importance for the given technical (or scientific) aim in

view. What aspects of a fact are taken notice of, will

consequently depend upon circumstances, or even on Their form
, . . in many as-

the caprice of the observer. Hence there is always op- pects, acci-

• rir dental.
portumty for the discovery of new aspects of the fact,

which will lead to the establishment of new rules of

equal validity with, or superior to, the old. So, for in-

stance, the weights and the lengths of the lever-arms

were regarded at first, by Archimedes, as the conditions

that determined equilibrium. Afterwards, by Da Vinci

and Ubaldi the weights and the perpendicular distances

from the axis of the lines of force were recognised as

the determinative conditions. Still later, by Galileo,

the weights and the amounts of their displacements,

and finally by Varignon the weights and the directions

of the pulls with respect to the axis were taken as the

elements of equilibrium, and the enunciation of the

rules modified accordingly.

3. Whoever makes a new observation of this kind, puriiabii-

and establishes such a new rule, knows, of course, our in the men-
,.,..,., . . „ tal recon-
liability to error in attempting mentally to represent struction of

the fact, whether by concrete images or in abstract con-

ceptions, which we must do in order to have the mental

model we have constructed always at hand as a substi-

tute for the fact when the latter is partly or wholly in-

accessible. The circumstances, indeed, to which we
have to attend, are accompanied by so many other,

collateral circumstances, that it is frequently difficult

to single out and consider those that are essential to the

purpose in view. Just think how the facts of friction,

the rigidity of ropes and cords, and like conditions in

machines, obscure and obliterate the pure outlines of



8o THE SCIENCE OF MECHANICS.

Thisiiabil- the main facts. No wonder, therefore, that the discov-

w t™s
P
eek erer or verifier of a new rule, urged by mistrust of him-

Sfai
r

inew
f8

self, seeks after a proof of the rule whose validity he
ruleS *

believes he has discerned. The discoverer or verifier

does not at the outset fully trust in the rule ;
or, it may

be, he is confident only of a part of it. So, Archimedes,

for example, doubted whether the effect of the action

of weights on a lever was proportional to the lengths of

the lever-arms, but he accepted without hesitation the

fact of their influence in some way. Daniel Bernoulli

does not question the influence of the direction of a

force generally, but only the form of its influence. As

a matter of fact, it is far easier to observe that a circum-

stance has influence in a given case, than to determine

what influence it has. In the latter inquiry we are in

much greater degree liable to error. The attitude of the

investigators is therefore perfectly natural and defens-

ible.

The natural The proof of the correctness of a new rule can be
methods of

attained by the repeated application of it, the frequent

comparison of it with experience, the putting of it to

the test under the most diverse circumstances. This

process would, in the natural course of events, get car-

ried out in time. The discoverer, however, hastens to

reach his goal more quickly. He compares the results

that flow from his rule with all the experiences with

which he is familiar, with all older rules, repeatedly

tested in times gone by, and watches to see if he do

not light on contradictions. In this- procedure, the

greatest credit is, as it should be, conceded to the oldest

and most familiar experiences, the most thoroughly

tested rules. Our instinctive experiences, those gen-

eralisations that are made involuntarily, by the irresist-

ible force of the innumerable facts that press in upon
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us, enjoy a peculiar authority ; and this is perfectly

warranted by the consideration that it is precisely the

elimination of subjective caprice and of individual er-

ror that is the object aimed at.

In this manner Archimedes proves his law of the illustration

o • 1*1 r • t i x^.
of the pre-

lever, btevmus his law of inclined pressure, Daniel ceding re-

Bernoulli the parallelogram of forces, Lagrange the

principle of virtual displacements. Galileo alone is

perfectly aware, with respect to the last-mentioned

principle, that his new observation and perception are

of equal rank with every former one—that it is derived

from the same source of experience. He attempts no

demonstration. Archimedes, in his proof of the prin-

ciple of the lever, uses facts concerning the centre of

gravity, which he had probably proved by means of the

very principle now in question
;
yet we may suppose

that these facts were otherwise so familiar, as to be un-

questioned,—so familiar indeed, that it may be doubted

whether he remarked that he had employed them in

demonstrating the principle of the lever. The instinc-

tive elements embraced in the views of Archimedes and

Stevinus have been discussed at length in the proper

place.

4. It is quite in order, on the making of a new dis- The posi-

. tionthatad-
covery, to resort to all proper means to bring the new vanced sci-

i itt-1 i r 1 1 r
ence should

rule to the test. When, however, alter the lapse 01 a occupy,

reasonable period of time, it has been sufficiently often

subjected to direct testing, it becomes science to recog-

nise that any other proof than that has become quite

needless ; that there is no sense in considering a rule

as the better established for being founded on others

that have been reached by the very same method of

observation, only earlier ; that one well-considered and

tested observation is as good as another. To-day, we
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should regard the principles of the lever, of statical

moments, of the inclined plane, of virtual displace-

ments, and of the parallelogram of forces as discovered

by equivalent observations. It is of no importance now,

that some of these discoveries were made directly, while

others were reached by roundabout ways and as de-

pendent upon other observations. It is more in keep-

ing, furthermore, with the economy of thought and with

insight bet- the aesthetics of science, directly to recognise a principle

tfficiSdeS- (say that of the statical moments) as the key to the un-

derstanding of all the facts of a department, and really

see how it pervades all those facts, rather than to hold

ourselves obliged first to make a clumsy and lame de-

duction of it from unobvious propositions that involve

the same principle but that happen to have become

earlier familiar to us. This process science and the in-

dividual (in historical study) may go through once for

all. But having done so both are free to adopt a more

convenient point of view.

Themis- 5- In fact, this mania for demonstration in science

mania
f

for
e

results in a rigor that is false and mistaken. Some pro-

demonstra-
positions are ^id to be possessed of more certainty

than others and even regarded as their necessary and

incontestable foundation ; whereas actually no higher,

or perhaps not even so high, a degree of certainty at-

taches to them. Even the rendering clear of the de-

gree of certainty which exact science aims at, is not at-

tained here. Examples of such mistaken rigor are to

be found in almost every text-book. The deductions

of Archimedes, not considering their historical value,

are infected with this erroneous rigor. But the most

conspicuous example of all is furnished by Daniel Ber-

noulli's deduction of the parallelogram of forces {Com-

ment. Acad. Petrop. T. I.).

tion.
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6. As already seen, instinctive knowledge enjoys The char-
J

. acterofin-

our exceptional confidence. No longer knowing how stinctive... knowledge.

we have acquired it, we cannot criticise the logic by

which it was inferred. We have personally contributed

nothing to its production. It confronts us with a force

and irresistibleness foreign to the products of volun-

tary reflective experience. It appears to us as some-

thing free from subjectivity, and extraneous to us, al-

though we have it constantly at hand so that it is more

ours than are the individual facts of nature.

All this has often led men to attribute knowledge of its author-

! , . rr
• itynotabso-

this kind to an entirely different source, namely, to view luteiy su-

m • n preme.
it as existing a priori in us (previous to all experience).

That this opinion is untenable was fully explained in

our discussion of the achievements of Stevinus. Yet

even the authority of instinctive knowledge, however

important it may be for actual processes of develop-

ment, must ultimately give place to that of a clearly and

deliberately observed principle. Instinctive knowledge

is, after all, only experimental knowledge, and as such

is liable, we have seen, to prove itself utterly insuffi-

cient and powerless, when some new region of expe-

rience is suddenly opened up.

7. The true relation and connection of the different The true re-

, lationofthe
principles is the historical one. The one extends farther principles

i-i • 1 ^ r i i -vt . , an histori-

m this domain, the other farther m that. JNotwitn- cai one.

standing that some one principle, say the principle of

virtual displacements, may control with facility a

greater number of cases than other principles, still

no assurance can be given that it will always maintain

its supremacy and will not be outstripped by some new

principle. All principles single out, more or less arbi-

trarily, now this aspect now that aspect of the same

facts, and contain an abstract summarised rule for the
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refigurement of the facts in thought. We can never

assert that this process has been definitively completed.

Whosoever holds to this opinion, will not stand in the

way of the advancement of science.

Conception 8. Let us, in conclusion, direct our attention for a
of force in .-...„.
statics. moment to the conception of force in statics, rorce is

any circumstance of which the consequence is motion.

Several circumstances of this kind, however, each single

one of which determines motion, may be so conjoined

that in the result there shall be no motion. Now stat-

ics investigates what this mode of conjunction, in gen-

eral terms, is. Statics does not further concern itself

about the particular character of the motion condi-

tioned by the forces. The circumstances determinative

of motion that are best known to us, are our own vo-

The origin litional acts—our innervations. In the motions which

tion of we ourselves determine, as well as in those to which

we are forced by external circumstances, we are always

sensible of a pressure. Thence arises our habit of rep-

resenting all circumstances determinative of motion as

something akin to volitional acts—as pressures. The

attempts we make to set aside this conception, as sub-

jective, animistic, and unscientific, fail invariably. It

cannot profit us, surely, to do violence to our own nat-

ural-born thoughts and to doom ourselves, in that re-

gard, to voluntary mental penury. We shall subse-

quently have occasion to observe, that the conception

referred to also plays a part in the foundation of dy-

namics.

We are able, in a great many cases, to replace the

circumstances determinative of motion, which occur in

nature, by our innervations, and thus to reach the idea

of a gradation of the intensity of forces. But in the esti-

mation of this intensity we are thrown entirely on the

pressure.



THE PRINCIPLES OF STATICS. 85

resources of our memory, and are also unable to com-Ueco^

municate our sensations. Since it is possible, how- acterof all

ever, to represent every condition that determines

motion by a weight, we arrive at the perception that

all circumstances determinative of motion (all forces)

are alike in character and may be replaced and meas-

ured by quantities that stand for weight. The meas-

urable weight serves us, as a certain, convenient, and

communicable index, in mechanical researches, just as

the thermometer in thermal researches is an exacter

substitute for our perceptions of heat. As has pre- Theidearf

viously been remarked, statics cannot wholly rid itself auxiliary^

of all knowledge of phenomena of motion. This par- statics.

ticularly appears in the determination of the direction

of a force by the direction of the motion which it would

produce if it acted alone. By the point of application

of a force we mean that point of a body whose motion

is still determined by the force when the point is freed

from its connections with the other parts of the body.

Force accordingly is any circumstance that de- The gene-
- - •% Fell clttri"

termines motion; and its attributes may be stated asbutesof

follows. The direction of the force is the direction of

motion which is determined by that force, alone. The

point of application is that point whose motion is de-

termined independently of its connections with the

system. The magnitude of the force is that weight

which, acting (say, on a string) in the direction deter-

mined, and applied at the point in question, determines

the same motion or maintains the same equilibrium.

The other circumstances that modify the determination

of a motion, but by themselves alone are unable to pro-

duce it, such as virtual displacements, the arms of

levers, and so forth, may be termed collateral condi-

tions determinative of motion and equilibrium.
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VI.

THE PRINCIPLES OF STATICS IN THEIR APPLICATION TO

FLUIDS.

No essen- i. The consideration of fluids has not supplied stat-
tiallynew •

, T
. n .

points of ics with many essentially new points of view, yet nu-
view in- ...

1 . ..,
voived in merous applications and confirmations of the principles
t issu

J ect
- already known have resulted therefrom, and physical

experience has been greatly enriched by the investiga-

tions of this domain. We shall devote, therefore, a few
pages to this subject.

2. To Archimedes also belongs the honor of found-

ing the domain of the statics of liquids. To him we
owe the well-known proposition concerning the buoy-

ancy, or loss of weight, of bodies immersed in liquids,

of the discovery of which Vitruvius, De Architectural

Lib. IX, gives the following account :

vitruvius's " Though Archimedes discovered many curious
account of

k k i
-. ..

.

. , . ,

Archime- ' ' matters that evince great intelligence, that which I am
cIgs's dis—
covery. "about to mention is the most extraordinary. Hiero,

"when he obtained the regal power in Syracuse, hav-

ing, on the fortunate turn of his affairs, decreed a

"votive crown of gold to be placed in a certain temple

"to the immortal gods, commanded it to be made of

"great value, and assigned for this purpose an appro-

priate weight of the metal to the manufacturer. The
"latter, in due time, presented the work to the king,

"beautifully wrought ; and the weight appeared to cor-

respond with that of the gold which had been as-

" signed for it.

"But a report having been circulated, that some of

"'the gold had been abstracted, and that the deficiency
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"thus caused had been supplied by silver, Hiero was The ac-•i-ii count ofVi-
" indignant at the fraud, and, unacquainted with the truvius.

"method by which the theft might be detected, re-

" quested Archimedes would undertake to give it his

"attention. Charged with this commission, he by

"chance went to a bath, and on jumping into the tub,

"perceived that, just in the proportion that his body

"became immersed, in the same proportion the water

"ran out of the vessel. Whence, catching at the

" method to be adopted for the solution of the proposi-

tion, he immediately followed it up, leapt out of the

"vessel in joy, and returning home naked, cried out

"with a loud voice that he had found that of which he

"was in search, for he continued exclaiming, in Greek,

" evpi]ita
y
evpipta, (I have found it, I have found it !)"

^. The observation which led Archimedes to his statement
. . . .

of the Ar-

proposition, was accordingly this, that a body 1m- chimedean
. .

proposition

mersed in water must raise an equivalent quantity of

water ; exactly as if the body lay on one pan of a balance

and the water on the other. This conception, which

at the present day is still the most natural and the

most direct, also appears in Archimedes's treatises On
Floating Bodies, which unfortunately have not been

completely preserved but have in part been restored

by F. Commandinus.

The assumption from which Archimedes starts

reads thus

:

"It is assumed as the essential property of a liquid The Archi-........ .. . ..
r . medean as-

that in all uniform and continuous positions 01 its parts sumption.

the portion that suffers the lesser pressure is forced

upwards by that which suffers the greater pressure.

But each part of the liquid suffers pressure from the

portion perpendicularly above it if the latter be sinking

or suffer pressure from another portion."
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Analysis of
the princi-
ple.

Fig. 59-

Archimedes now, to present the matter briefly,

conceives the entire spherical earth as fluid in consti-

tution, and cuts out of it pyramids the vertices of

which lie at the centre (Fig. 59). All these pyramids

must, in the case of equilib-

rium, have the same weight,

and the similarly situated

parts of the same must all

suffer the same pressure.

If we plunge a body a of

the same specific gravity as

water into one of the pyra-

mids, the body will com-

pletely submerge, and, in

the case of equilibrium, will supply by its weight the

pressure of the displaced water. The body b, of less

specific gravity, can sink, without disturbance of equi-

librium, only to the point at which the water beneath

it suffers the same pressure from the weight of the

body as it would if the body were taken out and the

submerged portion replaced by water. The body c,

of a greater specific gravity, sinks as deep as it possibly

can. That its weight is lessened in the water by an

amount equal to the weight of the water displaced,

will be manifest if we imagine the body joined to

another of less specific gravity so that a third body is

formed having the same specific gravity as water,

which just completely submerges,

rhe state of 4. When in the sixteenth century the study of the

Slhe^ix-
6
works of Archimedes was again taken up, scarcely the

tu?y.

th C6n" principles of his researches were understood. The

complete comprehension of his deductions was at that

time impossible.

Stevinus rediscovered by a method of his own the
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most important principles of hydrostatics and the de- The discov-

ductions therefrom. It was principally two ideas fromvinus.

which Stevinus derived his fruitful conclusions. The

one is quite similar to that relating to the endless

chain. The other consists in the assumption that the

solidification of a fluid in equilibrium does not disturb

its equilibrium.

Stevinus first lays down this principle. Any given The first
J r r

^ ^ fundamen-

mass of water A (Fig. 60), immersed in water, is mtaiprinci-

equilibrium in all its parts. If A

A

Fig. 60.

were not supported by the sur-

rounding water but should, let us

say, descend, then the portion of

water taking the place of A and

placed thus in the same circum-

stances, would, on the same as-

sumption, also have to descend.

This assumption leads, therefore, to the establishment

of a perpetual motion, which is contrary to our ex-

perience and to our instinctive knowledge of things.

Water immersed in water loses accordingly its The second
fundamen-

whole weight. If, now, we imagine the surface of the tai princi-

. pie.

submerged water solidified, the vessel formed by this

surface, the vas superficiarium as Stevinus calls it, will

still be subjected to the same circumstances of pres-

sure. If empty, the vessel so formed will suffer an

upward pressure in the liquid equal to the weight of the

water displaced. If we fill the solidified surface with

some other substance of any specific gravity we may *

choose, it will be plain that the diminution of the

weight of the body will be equal to the weight of the

fluid displaced on immersion.

In a rectangular, vertically placed parallelepipedal

vessel filled with a liquid, the pressure on the horizontal
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stevinus's base is equal to the weight of the liquid. The pressure
uc ions.

.^ equa^ a i so? £or a^ par ts of the bottom of the same

area. When now Stevinus imagines portions of the

liquid to be cut out and replaced by rigid immersed

bodies of the same specific gravity, or, what is the

same thing, imagines parts of the liquid to become so-

lidified, the relations of pressure in the vessel will not

be altered by the procedure. But we easily obtain in

this way a clear view of the law that the pressure on

the base of a vessel is independent of its form, as well

as of the laws of pressure in communicating vessels,

and so forth.

Galileo, in 5. Galileo treats the equilibrium of liquids in com-

ment of this municating vessels and the problems connected there-

pk>ys
C
the

m
with by the help of the principle of virtual displace-

principle of , T1T ,-„. , . , ,,

virtuaidis- ments. NN (Fig. 61) being the
placements *B

S\

A
S

Fig. 61.

N

common level of a liquid in equilib-

rium in two communicating vessels,

Galileo explains the equilibrium

here presented by observing that in

the case of any disturbance the dis-

placements of the columns are to

each other in the inverse proportion

of the areas of the transverse sec-

tions and of the weights of the columns—that is, as

with machines in equilibrium. But this is not quite cor-

rect. The case does not exactly correspond to the

cases of equilibrium investigated by Galileo in ma-

chines, which present indifferent equilibrium. With

liquids in communicating tubes every disturbance of the

common level of the liquids produces an elevation of

the centre of gravity. In the case represented in Fig.

61, the centre of gravity S of the liquid displaced from

the shaded space in A is elevated to *S", and we may
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regard the rest of the liquid as not having been moved.

Accordingly, in the case of equilibrium, the centre of

gravity of the liquid lies at its lowest possible point.

6. Pascal likewise employs the principle of virtual The same
.

principle

displacements, but in a more correct manner, leaving made use of

. . . .... by Pascal.

the weight of the liquid out of account and considering

only the pressure at the surface. If we imagine two

communicating vessels to be closed by pistons (Fig.

62), and these pistons loaded with
(

weights proportional to their surface-

areas, equilibrium will obtain, because

in consequence of the invariability of

the volume of the liquid the displace-

ments in every disturbance are in-

versely proportional to the weights. Fig. 62.

For Pascal, accordingly, it follows, as a necessary con-

sequence, from the principle of virtual displacements,

that in the case of equilibrium every pressure on a su-

perficial portion of a liquid is propagated with undi-

minished effect to every other superficial portion, how-

ever and in whatever position it be placed. No objec-

tion is to be made to discovering the principle in this

way. Yet we shall see later on that the more natural

and satisfactory conception is to regard the principle as

immediately given.

7. We shall now, after this historical sketch, again Detailed
, . r . . . .. ....... considera-

examme the most important cases of liquid equilibrium, tion of the

and from such different points of view as may be con-

venient.

The fundamental property of liquids given us by

experience consists in the flexure of their parts on the

slightest application of pressure. Let us picture to our-

selves an element of volume of a liquid, the gravity of

which we disregard—say a tiny cube. If the slightest
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The funda- excess of pressure be exerted on one of the surfaces of

property of this cube, (which we now conceive, for the moment,

mobility of as a fixed geometrical locus, containing the fluid but
eir par s.

^^ ^ .^ subs tance) the liquid (supposed to have pre-

viously been in equilibrium and at rest) will yield and

pass out in all directions through the other five surfaces

of the cube. A solid cube can stand a pressure on its

upper and lower surfaces different in magnitude from

that on its lateral surfaces ; or vice versa. A fluid cube,

on the other hand, can retain its shape only if the same

perpendicular pressure be exerted on all its sides. A
similar train of reasoning is applicable to all polyhe-

drons. In this conception, as thus geometrically eluci-

dated, is contained nothing but the crude experience

that the particles of a liquid yield to the slightest pres-

sure, and that they retain this property also in the in-

terior of the liquid when under a high pressure ; it

being observable, for example, that under the condi-

tions cited minute heavy bodies sink in fluids, and so on.

A second With the mobility of their parts liquids combine

fhe
P
com

y
- still another property, which we will now consider. Li-

oTtheirVoi quids suffer through pressure a diminution of volume

which is proportional to the pressure exerted on unit

of surface. Every alteration of pressure carries along

with it a proportional alteration of volume and density.

If the pressure diminish, the volume becomes greater,

the density less. The volume of a liquid continues to

diminish therefore on the pressure being increased, till

the point is reached at which the elasticity generated

within it equilibrates the increase of the pressure.

8. The earlier inquirers, as for instance those of the

Florentine Academy, were of the opinion that liquids

were incompressible. In 1761, however, John Canton

performed an experiment by which the compressibility
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lb

Fig. 63.

of water was demonstrated. A thermometer glass is The first

demonstra-
filled with water, boiled, and then sealed. (Fig. 63.) tionof the

/ compressi-
The liquid reaches to a. But since the space above a is bMty of

liquids.

airless, the liquid supports no atmospheric pres-

sure. If the sealed end be broken off, the liquid

will sink to b. Only a portion, however, of this

displacement is to be placed to the credit of the

compression of the liquid by atmospheric pres-

sure. For if we place the glass before breaking

off the top under an air-pump and exhaust the

chamber, the liquid will sink to c. This last phe-

nomenon is due to the fact that the pressure that

bears down on the exterior of the glass and diminishes

its capacity, is now removed. On breaking off the top,

this exterior pressure of the atmosphere is compensated

for by the interior pressure then introduced, and an

enlargement of the capacity of the glass again sets in.

The portion cb, therefore, answers to the actual com-

pression of the liquid by the pressure of the atmos-

phere.

The first to institute exact experiments on the com- The experi-
ments of

pressibility of water, was Oersted, who employed to oersted on
r J

.

L J
this subject.

this end a very ingenious method. A

A B
thermometer glass A (Fig. 64) is filled

with boiled water and is inverted, with

open mouth, into a vessel of mercury.

Near it stands a manometer tube B filled

with air and likewise inverted with open

mouth in the mercury. The whole ap-

paratus is then placed in a vessel filled

with water, which is compressed by the

aid of a pump. By this means the water

in A is also compressed, and the filament of quicksilver

which rises in the capillary tube of the thermometer-

Fig. 64.
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glass indicates this compression. The alteration of

capacity which the glass A suffers in the present in-

stance, is merely that arising from the pressing to-

gether of its walls by forces which are equal on all sides.

The exped- The most delicate experiments on this subject have

Grassi. been conducted by Grassi with an apparatus con-

structed by Regnault, and computed with the assist-

ance of Lame's correction-formulae. To give a tan-

gible idea of the compressibility of water, we will remark

that Grassi observed for boiled water at 0° under an

increase of one atmospheric pressure a diminution of

the original volume amounting to 5 in 100,000 parts.

If we imagine, accordingly, the vessel A to have the

capacity of one litre (1000 ccm.), and affix to it a cap-

illary tube of 1 sq. mm. cross-section, the quicksilver

filament will ascend in it 5 cm. under a pressure of

one atmosphere,

surface-
#

9. Surface-pressure, accordingly, induces a physical

ducelTn
m

~
alteration in a liquid (an alteration in density), which

alteration can be detected by sufficiently delicate means—even
ensity.

Qpt jca^ ^e are a iwavs a t liberty to think that por-

tions of a liquid under a higher pressure are more dense,

though it may be very slightly so, than parts under a

less pressure.

The impii- Let us imagine now, we have in a liquid (in the in-

this°fact? terior of which no forces act and the gravity of which

we accordingly neglect) two portions subjected to un-

equal pressures and contiguous to one another. The

portion under the greater pressure, being denser, will

expand, and press against the portion under the less

pressure, until the forces of elasticity as lessened on the

one side and increased on the other establish equilib-

rium at the bounding surface and both portions are

equally compressed.
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If we endeavor, now, quantitatively to elucidate our Thestate-

i i_-i-
mentof

mental conception of these two facts, the easy mobility these impii-
cations.

and the compressibility of the parts of a liquid, so that

they will fit the most diverse classes of experience,

we shall arrive at the following proposition : When
equilibrium subsists in a liquid, in the interior of which

no forces act and the gravity of which we neglect, the

same equal pressure is exerted on each and every equal

surface-element of that liquid however and wherever

situated. The pressure, therefore, is the same at all

points and is independent of direction.

Special experiments in demonstration of this prin-

ciple have, perhaps, never been instituted with the re-

quisite degree of exactitude. But the proposition has

by our experience of liquids been made very familiar,

and readily explains it.

10. If a liquid be enclosed in a vessel (Fig. 65) Preiimi-
. nary re-

which is supplied with a piston ^4, the cross-section marks to.... i«i • 7->i-i tne discuss-

of which is unit in area, and with a piston B which ion of Pas-
cal's deduc-

for the time being is made station- WzkzmA
tion '

ary, and on the piston A a load p ^^iilHiW
be placed, then the same pressure JPeSeHB^
p, gravity neglected, will prevail ^^^^^^^^^
throughout all the parts of the vessel, j^^^^^^^^^
The piston will penetrate inward and ^^^^^^^^^F
the walls of the vessel will continue

g\^^z&^

to be deformed till the point is reached Fi g- 65-

at which the elastic forces of the rigid and fluid bodies

perfectly equilibrate one another. If then we imagine

the piston B, which has the cross-section/, to be mov-

able, a force f.p alone will keep it in equilibrium.

Concerning Pascal's deduction of the proposition

before discussed from the principle of virtual displace-

ments, it is to be remarked that the conditions of dis-
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Pascal's de-

duction.

criticism of placement which he perceived hinge wholly upon the

fact of the ready mobility of the parts and on the

equality of the pressure throughout every portion of

the liquid. If it were possible for a greater compression

to take place in one part of a liquid than in another,

the ratio of the displacements would be disturbed and

Pascal's deduction would no longer be admissible.

That the property of the equality of the pressure is a

property given in experience, is a fact that cannot be

escaped ; as we shall readily admit if we recall to mind

that the same law that Pascal deduced for liquids also

holds good for gases, where even approximately there

can be no question of a constant volume. This latter

fact does not afford any difficulty to our view ;
but to

that of Pascal it does. In the case of the lever also, be

it incidentally remarked, the ratios of the virtual dis-

placements are assured by the elastic forces of the

lever-body, which do not permit of any great devia-

tion from these relations.

ii. We shall now consider the action of liquids un-The behav-
iour of 1

qSdsunder der the influence of gravity. The upper surface of a
the action ,. . , . -i-i • • i

• ± 1

of gravity. liquid in equilibrium is horizontal,

iVW(Fig. 66). This fact is at once

rendered intelligible when we re-

flect that every alteration of the sur-

face in question elevates the centre

of gravity of the liquid, and pushes

the liquid mass resting in the shaded

space beneath .AW and having the centre of gravity S

into the shaded space above NN having the centre of

gravity S'. Which alteration, of course, is at once re-

versed by gravity.

Let there be in equilibrium in a vessel a heavy

liquid with a horizontal upper surface. We consider

Fig. 66.
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(Fig. 67) a small rectangular parallelepipedon in theThecon-
. . ... . ditions of

interior. The area of its horizontal base, we will say, is equilibrium

a, and the length of its vertical edges dh. The weight subjected

of this parallelepipedon is therefore ad/is, where s is tionofgrav-

its specific gravity. If the paral-

\-dfi

Fig. 67.

lelepipedon do not sink, this is

possible only on the condition that

a greater pressure is exerted on the

lower surface by the fluid than on

the upper. The pressures on the

upper and lower surfaces we will

respectively designate as ap and a (p -f dp). Equi-

librium obtains when adh.s = a dp or dp/d/i =s,

where h in the downward direction is reckoned as posi-

tive. We see from this that for equal increments of //

vertically downwards the pressure/ must, correspond-

ingly, also receive equal increments. So that / =
hs -\- q\ and if q, the pressure at the upper surface,

which is usually the pressure of the atmosphere, be-

comes = 0, we have, more simply, p = hs, that is, the

pressure is proportional to the depth beneath the sur-

face. If we imagine the liquid to be pouring into a ves-

sel, and this condition of affairs noc vat attained, every

liquid particle will then sink until the compressed par-

ticle beneath balances by the elasticity developed in it

the weight of the particle above.

From the view we have here presented it will be fur- Different

ther apparent, that the increase of pressure in a liquid tions exist

, . ii«i 1 • • • i-i • only in the
takes place solely in the direction in which gravity line of the

acts. Only at the lower surface, at the base, of the gravity.

parallelepipedon, is an excess of elastic pressure on the

part of the liquid beneath required to balance the

weight of the parallelepipedon. Along the two sides of

the vertical containing surfaces of the parallelepipedon,
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the liquid is in a state of equal compression, since no

force acts in the vertical containing surfaces that would

determine a greater compression on the one side than

on the other.

Level sur- If we picture to ourselves the totality of all the
faces '

points of the liquid at which the same pressure p acts,

we shall obtain a surface—a so-called level surface. If

we displace a particle in the direction of the action of

gravity, it undergoes a change of pressure. If we dis-

place it at right angles to the direction of the action of

gravity, no alteration of pressure takes place. In the

latter case it remains on the same level surface, and

the element of the level surface, accordingly, stands at

right angles to the direction of the force of gravity.

Imagining the earth to be fluid and spherical, the

level surfaces are concentric spheres, and the directions

of the forces of gravity (the radii) stand at right angles

to the elements of the spherical surfaces. Similar ob-

servations are admissible if the liquid particles be acted

on by other forces than gravity, magnetic forces, for

example.

Their func- The level surfaces afford, in a certain sense, a dia-

Ihoulht. gram of the force-relations to which a fluid is subjected;

a view further elaborated by analytical hydrostatics.

12. The increase of the pressure with the depth be-

low the surface of a heavy liquid may be illustrated by

a series of experiments which we chiefly owe to Pas-

cal. These experiments also well illustrate the fact,

that the pressure is independent of the direction. In

Fig. 68, i, is an empty glass tube g ground off at the

bottom and closed by a metal disc pp, to which a

string is attached, and the whole plunged into a vessel

of water. When immersed to a sufficient depth we

may let the string go, without the metal disc, which is
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c

supported by the pressure of the liquid, falling. In 2,

the metal disc is replaced by a tiny column of mer-

cury. If (3) we dip an open siphon tube filled with

mercury into the water, we shall

see the mercury, in consequence

of the pressure at a, rise into

the longer arm. In 4, we see a

tube, at the lower extremity of

which a leather bag filled with

mercury is tied : continued im-

mersion forces the mercury

higher and higher into the tube.

In 5, a piece of wood h is driven

by the pressure of the water into

the small arm of an empty siphon

tube. In 6, a piece of wood H
immersed in mercury adheres to

the bottom of the vessel, and is

pressed firmly against it for as

long a time as the mercury is

kept from working its way un-

derneath it.

13. Once we have made quite

clear to ourselves that the pres-

sure in the interior of a heavy

liquid increases proportionally to

the depth below the surface, the

law that the pressure at the base

of a vessel is independent of its

form will be readily perceived.

The pressure increases as we de-

scend at an equal rate, whether the vessel (Fig. 69)

has the form abed or ebef. In both cases the walls

of the vessel where they meet the liquid, go on deforming

Pascal's ex-
periments
on the
pressure of
liquids.

The pres-
sure at the
Dase of a
vessel inde-
pendent of
its form-
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Fig. 69.

Elucida-
tion of this
fact.

till the point is reached at which they equilibrate by the

elasticity developed in them the pressure exerted by the

fluid, that is, take the place as regards pressure of the

fluid adjoining. This fact is

a direct justification of Ste-

vinus's fiction of the solidi-

fied fluid supplying the place

of the walls of the vessel.

The pressure on the base

always remains P = A hs,

.where A denotes the area of the base, h the depth of

the horizontal plane base below the level, and s the

specific gravity of the liquid.

The fact that, the walls of the vessel being neg-

lected, the vessels 1, 2, 3 of Fig. 70 of equal base-

area and equal pressure-height weigh differently in the

balance, of course

in no wise con-

tradicts the laws

of pressure men-

tioned. If we take

into account the

lateral pressure, we shall see that in the case of 1 we

have left an extra component downwards, and in the

case of 3 an extra component upwards, so that on the

whole the resultant superficial pressure is always equal

to the weight.

The princi- 14. The principle of virtual displacements is ad-

tuai°dis-
r

mirably adapted to the acquisition of clearness and
placements , • r ^, • , >

applied to comprehensiveness in cases ot this character, and we

eratlon of shall accordingly make use of it. To begin with, how-

thi°s class. ever, let the following be noted. If the weight q (Fig.

71) descend from position i to position 2, and a weight

of exactly the same size move at the same time from

Fig. 70.
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2 to 3, the work performed in this operation isqh
1

-\- ^^*.
gh

2
= q {h

1 + /i
2 ),

the same, that is, as if the weight marks -

q passed directly from i to 3 and the weight at 2 re-

mained in its original position. The observation is

easily generalised.

/

k, 2

h2
3

Fig. 71.
Fi S-

~
2 -

Let us consider a heavy homogeneous rectangular

parallelepipedon, with vertical edges of the length //,

base A, and the specific gravity s (Fig. 72). Let this

parallelepipedon (or, what is the same thing, its centre

of gravity) descend a distance dh. The work done is

then Ahs.dh, or, also, A dhs.h. In the first expres-

sion we conceive the whole weight A /is displaced the

vertical distance dh ; in the second we conceive the

weight Ad /is as having descended from the upper

shaded space to the lower shaded space the distance h,

and leave out of account

the rest of the body.

Both methods of concep-

tion are admissible and

equivalent.

15. With the aid of

this observation we shall

obtain a clear insight into

the paradox of Pascal, which consists of the following.

The vessel g (Fig. 73), fixed to a separate support and

consisting of a narrow upper and a very broad lower

cylinder, is closed at the bottom by a movable piston,

Fig. 73-
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which, by means of a string passing through the axis

of the cylinders, is independently suspended from the

extremity of one arm of a balance. If g be filled with

water, then, despite the smallness of the quantity of

water used, there will have to be placed on the other

scale-pan, to balance it, several weights of consider-

able size, the sum of which will be Ahs, where A is

the piston-area, h the height of the liquid, and s its

specific gravity. But if the liquid be frozen and the

mass loosened from the walls of the vessel, a very

small weight will be sufficient to preserve equilibrium.

The expia- Let us look to the virtual displacements of the two

"heparldox cases (Fig. 74). In the first case, supposing the pis-

ton to be lifted a distance dh, the virtual moment is

_ A d/is Ji or A hs.dh. It thus

comes to the same thing,

dh whether we consider the mass

that the motion of the piston

^^dk displaces to be lifted to the
dk\^^J V Mh

upper surface of the fluid

Fi s- 74- through the entire pressure-

height, or consider the entire weight Ahs lifted the

distance of the piston-displacement d/i. In the second

case, the mass that the piston displaces is not lifted to

the. upper surface of the fluid, but suffers a displace-

ment which is much smaller—the displacement, namely,

of the piston. If A, a are the sectional areas respect-

ively of the greater and the less cylinder, and k and /

their respective heights, then the virtual moment of the

present case is Adh s . k + adhs . 1= (A k -\- a 1) s.dh;

which is equivalent to the lifting of a much smaller

weight (Ah -f- a I) s, the distance dh.

1 6. The laws relating to the lateral pressure of

liquids are but slight modifications of the laws of basal
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pressure. If we have, for example, a cubical vessel The laws of

of i decimetre on the side, which is a vessel of litre pressure,

capacity, the pressure on any one of the vertical lateral

walls ABCD, when the vessel is filled with water, is

easily determinable. The deeper the migratory element

considered descends beneath the surface, the greater

the pressure will be to which it is subjected. We easily

perceive, thus, that the pressure on a lateral wall is rep-

resented by a wedge of water ABCDHI vesting upon

the wall horizontally y£ £
placed, where ID is at

right angles to BD and

ID = HC=AC The
lateral pressure accor- H
dingly is equal to half

a kilogramme.

To determine the

point of application of the resultant pressure, conceive

ABCD again horizontal with the water-wedge resting

upon it. We cut off AK=BL-=l\AC, draw the

straight line KL and bisect it at M; M is the point of

application sought, for through this point the vertical

line cutting the centre of gravity of the wedge passes.

A plane inclined figure forming the base of a vessel The pres-

011-1 • 1 • • 1 • 1 • • 1 1 • 1 1 t
sure on a

filled with a liquid, is divided into the elements a, a
,
plane in-

... , , _ 7 , ... , . , , . r clinedbase.
a . . . with the depths k, h , h ... below the level ol

the liquid. The pressure on the base is

(a/i + a ti + a" h" + . . .) s.

If we call the total base-area A, and the depth of its

centre of gravity below the surface H, then

ah _|_ a'h* _|_ a"

/

t
" _|_ . . . a h + ah' + . . .

Fig. 75-

a -f- a -f- a" -f- . . . A

whence the pressure on the base is AHs.

=//,
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The deduc- 17 . The principle of Archimedes can be deduced in
tion Of the . a r -i r r^ a 1j_
principle of various ways. After the manner of Stevmus, let us

desmTybe conceive in the interior of the liquid a portion of it

various solidified. This portion now, as before, will be sup-
ways '

ported by the circumnatant liquid. The resultant of

the forces of pressure acting on the surfaces is accor-

dingly applied at the centre of gravity of the liquid dis-

placed by the solidified body, and is equal and opposite

to its weight. If now we put in the place of the solid-

ified liquid another different body of the same form, but

of a different specific gravity, the forces of pressure at

the surfaces will remain the same. Accordingly, there

now act on the body two forces, the weight of the body,

applied at the centre of gravity of the body, and the up-

ward buoyancy, the resultant of the surface-pressures,

applied at the centre of gravity of the displaced liquid.

The two centres of gravity in question coincide only in

the case of homogeneous solid bodies,

onemeth- If we immerse a rectangular parallelepipedon of al-

titude // and base a, with edges vertically placed, in a

liquid of specific gravity s, then the pressure on the

upper basal surface, when at a depth k below the level

of the liquid is ahs, while the pressure on the lower

surface is ex (k + &) s - As the lateral pressures destroy

each other, an excess of pressure ahs upwards re-

mains ; or, where v denotes the volume of the paral-

lelepipedon, an excess v . s.

Another We shall approach nearest the fundamental con-

volving the ception from which Archimedes started, by recourse to
principle of ....... . ,. ,

A T ,

virtual dis- the principle of virtual displacements. Let a paral-
placements. ,-»-». ,-n r i -r •

i

lelepipedon (Fig. 76) of the specific gravity a, base a,

and height h sink the distance dh. The virtual mo-

ment of the transference from the upper into the lower

shaded space of the figure will be a dh . a h. But while
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this is done, the liquid rises from the lower into the up-

per space, and its moment is adhsh. The total vir-

tual moment is therefore ah (p— s) dh = (J>
— q) d/i,

where/ denotes the weight of the body and q the weight

of the displaced liquid.

B

Fig. 76. Fig. 77-

18. The question might occur to us, whether the

upward pressure of a body in a liquid is affected by the

immersion of the latter in another liquid. As a fact,

this very question has been proposed. Let therefore

(Fig. 77) a body K be submerged in a liquid A and the

liquid with the containing vessel in turn submerged in

another liquid B. If in the determination of the loss

of weight in A it were proper to take account of the

loss of weight of A in B, then K's loss of weight would

necessarily vanish when the fluid B became identical

with A. Therefore, K immersed in A would suffer a

loss of weight and it would suffer none. Such a rule

would be nonsensical.

With the aid of the principle of virtual displace-

ments, we easily comprehend the more complicated

cases of this character. If a body be first gradually

immersed in B, then partly in B and partly in A,

finally in A wholly ; then, in the second case, consider-

ing the virtual moments, both liquids are to be taken

into account in the proportion of the volume of the

body immersed in them. But as soon as the body is

wholly immersed in A, the level of A on further dis-

Is the buoy-
ancy of a
body in a
liquid af-

fected by
the immer-
sion of that
liquid in a

second
liquid?

The eluci-
dation of
more com-
plicated
cases of this
class.
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The Archi-
medean
principle il-

lustrated by
an experi-
ment.

The coun-
ter-experi-
ment.

Remarks on
the experi-
ment.

placement no longer rises, and therefore B is no longer

of consequence.

19. Archimedes's principle may be illustrated by a

pretty experiment. From the one extremity of a scale-

beam (Fig. 78) we hang a hollow cube H, and beneath

it a solid cube M, which exactly fits into

the first cube. We put weights into the

opposite pan, until the scales are in

equilibrium. If now M be submerged

in water by lifting a vessel which stands

beneath it, the equilibrium will be dis-

turbed ; but it will be immediately re-

stored if E~, the hollow cube, be filled

with water.

A counter-experiment is the follow-

ing. H is left suspended alone at the

one extremity of the balance, and into

the opposite pan is placed a vessel of

water, above which on an independent

support J/hangs by a thin wire. The scales are brought

to equilibrium. If now M be lowered until it is im-

mersed in the water, the equilibrium of the scales will

be disturbed ; but on filling H with water, it will be

restored.

At first glance this experiment appears a little para-

doxical. We feel, however, instinctively, that M can-

not be immersed in the water without exerting a pres-

sure that affects the scales. When we reflect, that the

level of the water in the vessel rises, and that the solid

body M equilibrates the surface-pressure of the water

surrounding it, that is to say represents and takes the

place of an equal volume of water, it will be found

that the paradoxical character of the experiment van-

ishes.

Fig. 78.
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20. The most important statical principles have The gene-
. ral princi-

been reached in the investigation of solid bodies. 1 his pies of stat-

. ics might

course is accidentally the historical one, but it is by no have been

•11 1 tm jt reached in

means the only possible and necessary one. 1 he dit- the investi-

ferent methods that Archimedes, Stevinus, Galileo, and fluid bodies

the rest, pursued, place this idea clearly enough before

the mind. As a matter of fact, general statical princi-

ples, might, with the assistance of some very simple

propositions from the statics of rigid bodies, have been

reached in the investigation of liquids. Stevinus cer-

tainly came very near such a discovery. We shall stop

a moment to discuss the question.

Let us imagine a liquid, the weight of which we neg- The dis-

, . cussion and
lect. Let this liquid be enclosed in a vessel and sub- illustration

. a • r 1 i- -j of this

jected to a definite pressure. A portion 01 the liquid, statement,

let us suppose, solidifies. On the closed surface nor-

mal forces act proportional to the elements of the area,

and we see without difficulty that their resultant will

always be = 0.

If we mark off by a closed curve a portion of the

closed surface, we obtain, on either side of it, a non-

closed surface. All surfaces which are bounded by the

same curve (of double curvature) and on which forces

act normally (in the same sense) pro-

portional to the elements of the area,

have lines coincident in position for

the resultants of these forces.

Let us suppose, now, that a fluid

cylinder, determined by any closed

plane curve as the perimeter of its Fig. 79.

base, solidifies. We may neglect the two basal sur-

faces, perpendicular to the axis. And instead of the

cylindrical surface the closed curve simply may be con-

sidered. From this method follow quite analogous
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The dis- propositions for normal forces proportional to the ele-
cussion and
illustration ments of a plane curve.
of this x r i i 1

• -it
statement. it the closed curve pass into a triangle, the con-

sideration will shape itself thus. The resultant normal

forces applied at the middle points of the sides of the

triangle, we represent in direction, sense, and magni-

tude by straight lines (Fig. 8o). The
- lines mentioned intersect at a point

—

the centre of the circle described about

the triangle. It will further be noted,
Fig. 8o.

\)cl2X by the simple parallel displace-

ment of the lines representing the forces a triangle is

constructible which is similar and congruent to the

original triangle.

Thededuc- Thence follows this proposition :

tion of the . . . .

triangle of Any three forces, which, acting at a point, are pro-
forces by
this method portional and parallel in direction to the sides of a tri-

angle, and which on meeting by parallel displacement

form a congruent triangle, are in equilibrium. We see

at once that this proposition is simply a different form

of the principle of the parallelogram of forces.

If instead of a triangle we imagine a polygon, we
shall arrive at the familiar proposition of the polygon

of forces.

We conceive now in a heavy liquid of specific gravity

k a portion solidified. On the element a of the closed

encompassing surface there acts a normal force anz,
where z is the distance of the element from the level of

the liquid. We know from the outset the result.

similar de- If normal forces which are determined by anz,
duction of .

another im- where a denotes an element of. area and z its perpen-
portant pro- ........ . . .

position, dicular distance from a given planed, act on a closed

surface inwards, the resultant will be V. k, in which ex-

pression V represents the enclosed volume. The
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resultant acts at the centre of gravity of the volume,

is perpendicular to the plane mentioned, and is directed

towards this plane.

Under the same conditions let a rigid curved surface The propo-

be bounded by a plane curve, which encloses on the deduced, a

1 i a rr^t cat •
special case

plane the area A. The resultant of the forces acting of Greens
. ,

Theorem.
on the curved surface is K, where

R 2 = (AZny + ( Vk) 2 — AZVk 2 cos v,

in which expression Z denotes the distance of the

centre of gravity of the surface A from E, and v the

normal angle of E and A.

In the proposition of the last paragraph mathe-

matically practised readers will have recognised a par-

ticular case of Green's Theorem, which consists in the

reduction of surface-integrations to volume-integra-

tions or vice versa.

We may, accordingly, see into the force-system of aTheimpii-

fluid in equilibrium, or, if you please, see out of it, sys- the view

tems of forces of greater or less complexity, and thus
lscusse *

reach by a short path propositions a posteriori. It is a

mere accident that Stevinus did not light on these

propositions. The method here pursued corresponds

exactly to his. In this manner new discoveries can

still be made.

21. The paradoxical results that were reached in Fruitful re-

the investigation of liquids, supplied a stimulus to fur- investiga-
6

ther reflection and research. It should also not be left domain,

unnoticed, that the conception of a physico-mechanicat

continuum was first formed on the occasion of the in-

vestigation of liquids. A much freer and much more
fruitful mathematical mode of view was developed

thereby, than was possible through the study even of
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systems of several solid bodies. The origin, in fact,

of important modern mechanical ideas, as for instance

that of the potential, is traceable to this source.

THE PRINCIPLES OF STATICS IN THEIR APPLICATION TO

GASEOUS BODIES.

Character i . The same views that subserve the ends of science

partmentof in the investigation of liquids are applicable with but
inquiry.

slight modifications to the investigation of gaseous

bodies. To this extent, therefore, the investigation of

gases does not afford mechanics any very rich returns.

Nevertheless, the first steps that were taken in this

province possess considerable significance from the

point of view of the progress of civilisation and so

have a high import for science generally.

The eius- Although the ordinary man has abundant oppor-

i^subject- tunity, by his experience of the resistance of the air, by
matter.

the action Q { t^e w jn d, and the confinement of air in

bladders, to perceive that air is of the nature of a body,

yet this fact manifests itself infrequently, and never in

the obvious and unmistakable way that it does in the

case of solid bodies and fluids. It is known, to be sure,

but is not sufficiently familiar to be prominent in popu-

lar thought. In ordinary life the presence of the air is

scarcely ever thought of. (See p. 517.)

The effect Although the ancients, as we may learn from the

dLdosu'res 'accounts of Vitruvius, possessed instruments which,

iSce!
spr°V

"like the so-called hydraulic organs, were based on the

condensation of air, although the invention of the air-

gun is traced back to Ctesibius, and this instrument

was also known to Guericke, the notions which people

held with regard to the nature of the air as late even
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as the seventeenth century were exceedingly curious

and loose. We must not be surprised, therefore, at the

intellectual commotion which the first more important

experiments in this direction evoked. The enthusiastic

description which Pascal gives of Boyle's air-pump ex-

periments is readily comprehended, if we transport our-

selves back into the epoch of these discoveries. What

indeed could be more wonderful than the sudden dis-

covery that a thing which we do not see, hardly feel,

and take scarcely any notice of, constantly envelopes

us on all sides, penetrates all things ; that it is the most

important condition of life, of combustion, and of gi-

gantic mechanical phenomena. It was on this occa-

sion, perhaps, first made manifest by a great and strik-

ing disclosure, that physical science is not restricted

to the investigation of palpable and grossly sensible

processes.

The views 2. In Galileo's time philosophers explained the

on diL
a
s

n
u
e

b- phenomenon of suction, the action of syringes and

ieo'stiSe!
1 " pumps by the so-called horror vacui—nature's abhor-

rence of a vacuum. Nature was thought to possess

the power of preventing the formation of a vacuum by

laying hold of the first adjacent thing, whatsoever it

was, and immediately filling up with it any empty space

that arose. Apart from the ungrounded speculative

element which this view contains, it must be conceded,

that to a certain extent it really represents the phe-

nomenon. The person competent to enunciate it must

actually have discerned some principle in the phenom-

enon. This principle, however, does not fit all cases.

Galileo is said to have been greatly surprised at hearing

of a newly constructed pump accidentally supplied

with a very long suction-pipe which was not able to

raise water to a height of more than eighteen Italian
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ells. His first thought was that the horror vacui (or the

resistenza del vacuo) possessed a measurable power. The
greatest height to which water could be raised by suc-

tion he called altezza limitatissima. He sought, more-

over, to determine directly the weight able to draw out

of a closed pump-barrel a tightly fitting piston resting

on the bottom.

3. Torricelli hit upon the idea of measuring the Torriceiirs
experiment

resistance to a vacuum by a column of mercury instead

of a column of water, and he expected to obtain a col-

umn of about -j^- of the length of the water column.

His expectation was confirmed by the experiment per-

formed in 1643 by Viviani in the well-known manner,

and which bears to-day the name of the Torricellian

experiment. A glass tube somewhat over a metre in

length, sealed at one end and rilled with mercury, is

stopped at the open end with the finger, inverted in a

dish of mercury, and placed in a vertical position. Re-

moving the finger, the column of mercury falls and re-

mains stationary at a height of about 76 cm. By this

experiment it was rendered quite probable, that some
very definite pressure forced the fluids into the vacuum.

What pressure this was, Torricelli very soon divined.

Galileo had endeavored, some time before this, to Galileo's

determine the weight of the air, by first weighing a wefgh
P
air?

glass bottle containing nothing but air and then again

weighing the bottle after the air had been partly ex-

pelled by heat. It was known, accordingly, that the

air was heavy. But to the majority of men the horror

vacui and the weight of the air were very distantly

connected notions. It is possible that in Torricelli's

case the two ideas came into sufficient proximity to

lead him to the conviction that all phenomena ascribed

to the horror vacui were explicable in a simple and
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Atmospher- logical manner by the pressure exerted by the weight

Ss
P
co
e
ve
S

r

U
e
r

d of a fluid column—a column of air. Torricelli discov-

ceiH°
m

"

ered, therefore, the pressure of the atmosphere ;
he also

first observed by means of his column of mercury the

variations of the pressure of the atmosphere.

4. The news of Torricelli's experiment was circu-

lated in France by Mersenne, and came to the knowl-

edge of Pascal in the year 1644. The accounts of the

theory of the experiment were presumably so imper-

fect that Pascal found it necessary to reflect indepen-

dently thereon. {JPesanteur de Pair. Paris, 1663.)

Pascal's ex- He repeated the experiment with mercury and with
penments.

^^e Q £ water? or rather of red wine, 40 feet in length.

He soon convinced himself by inclining the tube that

the space above the column of fluid was really empty
;

and he found himself obliged to defend this view against

the violent attacks of his countrymen. Pascal pointed

out an easy way of producing the vacuum which they

regarded as impossible, by the use of a glass syringe,

the nozzle of which was closed with the finger under

water and the piston then drawn back without much

difficulty. Pascal showed, in addition, that a curved

siphon 40 feet high filled with water does not flow, but

can be made to do so by a sufficient inclination to the

perpendicular. The same experiment 'was made on a

smaller scale with mercury. The same siphon flows

or does not flow according as it is placed in an inclined

or a vertical position.

In a later performance, Pascal refers expressly to

the fact of the weight of the atmosphere and to the

pressure due to this weight. He shows, that minute

animals, like flies, are able, without injury to them-

selves, to stand a high pressure in fluids, provided only

the pressure is equal on all sides ; and he applies this
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at once to the case of fishes and of animals that live in

the air. Pascal's chief merit, indeed, is to have estab-

lished a complete analogy between the phenomena con-

ditioned by liquid pressure (water-pressure) and those

conditioned by atmospheric pressure.

5. By a series of experiments Pascal shows that

mercury in consequence of atmospheric pressure rises

into a space containing no air in the same way that,

in consequence of water-pressure, it rises into a space

containing no wrater. If into a deep ves-

sel filled with water (Fig. 81) a tube be

sunk at the lower end of which a bag of

mercury is tied, but so inserted that the

upper end of the tube projects out of the

water and thus contains only air, then

the deeper the tube is sunk into the water

the higher will the mercury, subjected Fig. 81.

to the constantly increasing pressure of the water, as-

cend into the tube. The experiment can also be made,

with a siphon-tube, or with a tube open at its lower end.

Undoubtedly it was the attentive consideration of

this very phenomenon that led Pascal to the idea that

the barometer-column must necessarily stand lower at

the summit of a mountain than at its base, and that

it could accordingly be employed to determine the

height of mountains. He communicated this idea to

his brother-in-law, Perier, who forthwith successfully

performed the experiment on the summit of the Puy

de Dome. (Sept. 19, 1648.)

Pascal referred the phenomena connected with ad-

hesion-plates to the pressure of the atmosphere, and

gave as an illustration of the principle involved the re-

sistance experienced when a large hat lying flat on a

table is suddenly lifted. The cleaving of wood to the

The anal-
ogy between
liquid and
atmospher-
ic pressure.

The height
of moun-
tains deter-
mined by
the barom-
eter.

Adhesion
plates.
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A siphon
which acts
by water-
pressure.

Pascal's
modifica-
tion of the
Torricelli-
an experi-
ment.

Fig. 82.

bottom of a vessel of quicksilver is a phenomenon of

the same kind.

Pascal imitated the flow produced in a siphon by

atmospheric pressure, by the use of water-pressure.

The two open unequal arms a and

b of a three-armed tube a b e (Fig.

82) are dipped into the vessels of

mercury e and d. If the whole

arrangement then be immersed in

a deep vessel of water, yet so that

the long open branch shall always

project above the upper surface,

the mercury will gradually rise in

the branches a and b, the columns

finally unite, and a stream begin to flow from the vessel

d to the vessel e through the siphon-tube open above

to the air.

/ The Torricellian experiment was modi-

fied by Pascal in a very ingenious manner.

A tube of the form abed (Fig. 83), of

double the length of an ordinary barom-

eter-tube, is filled with mercury. The

openings a and b are closed with the fin-

gers and the tube placed in a dish of

mercury with the end a downwards. If

now a be opened, the mercury in e d will

all fall into the expanded portion at e, and

the mercury in ab will sink to the height

of the ordinary barometer-column. A vac-

uum is produced at b which presses the

finger closing the hole painfully inwards.

If b also be opened the column in a b will

sink completely, while the mercury in the expanded

portion e, being now exposed to the pressure of the

Ky

Fig. 83.
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atmosphere, will rise in cd to the height of the barom-

eter-column. Without an air-pump it was hardly pos-

sible to combine the experiment and the counter-

experiment in a simpler and more ingenious manner

than Pascal thus did.

6. With regard to Pascal's mountain-experiment, Suppie-
mentary re-

we shall add the following brief supplementary remarks, marks on
a 3.SC3.I S

Let b„ be the height of the barometer at the level of mountain-
° experiment

the sea, and let it fall, say, at an elevation of m metres,

to kb
Q , where k is a proper fraction. At a further eleva-

tion of m metres, we must expect to obtain the barom-

eter-height k .kb
Q , since we here pass through a stratum

of air the density of which bears to that of the first the

proportion of k : 1. If we pass upwards to the altitude

h — n. vi metres, the barometer-height corresponding

thereto will be

log b h — log Ik
bh = k» . bQ or n = -**—-*-± or
h log k

m
^ = w7,(log*A — log*o).

lOg /v

The principle of the method is, we see, a very simple

one ; its difficulty arises solely from the multifarious

collateral conditions and corrections that have to be

looked to.

7. The most original and fruitful achievements in The expert-

. r\ r^ ments of

the domain of aerostatics we owe to Otto von Oue- otto von
__. . , , ,1 Guericke.

ricke. His experiments appear to have been suggested

in the main by philosophical speculations. He pro-

ceeded entirely in his own way ; for he first heard of

the Torricellian experiment from Valerianus Magnus

at the Imperial Diet of Ratisbon in 1654, where he dem-

onstrated the experimental discoveries made by him

about 1650. This statement is confirmed by his method
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of constructing a water-barometer which was entirely

different from that of Torricelli.

Thehiston- Guericke's book (Experimcnta nova, lit vocantur,
cal value of

. .

Guericke's Magdeburpica. Amsterdam. 1672) makes us realise
book. c ...

the narrow views men took in his time. The fact that

he was able gradually to abandon these views and to

acquire broader ones by his individual endeavor speaks

favorably for his intellectual powers. We perceive

with astonishment how short a space of time separates

us from the era of scientific barbarism, and can no lon-

ger marvel that the barbarism of the social order still

so oppresses us.

its specula- In the introduction to this book and in various other

ter. places, Guericke, in the midst of his experimental in-

vestigations, speaks of the various objections to the

Copernican system which had been drawn from the

Bible, (objections which he seeks to invalidate,) and

discusses such subjects as the locality of heaven, the

locality of hell, and the day of judgment. Disquisi-

tions on empty space occupy a considerable portion

of the work.

Guericke's Guericke regards the air as the exhalation or odor
notion of . .

the air. of bodies, which we do not perceive because we have

been accustomed to it from childhood. Air, to him,

is not an element. He knows that through the effects of

heat and cold it changes its volume, and that it is

compressible in Hero's Ball, or Pila Heronis ; on the

basis of his own experiments he gives its pressure at

20 ells of water, and expressly speaks of its weight, by

which flames are forced upwards.

8. To produce a vacuum, Guericke first employed

a wooden cask filled with water. The pump of a fire-

engine was fastened to its lower end. The water, it

was thought, in following the piston and the action of
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Guericke's First Experiments. {Experim. Magdeb.)
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His at-

tempts to

produce a
vacuum.

His final

success.

gravity, would fall and be pumped out. Guericke ex-

pected that empty space would remain. The fastenings

of the pump repeatedly proved to be too weak, since in

consequence of the atmospheric pressure that weighed

on the piston considerable force had to be applied to

move it. On strengthening the fastenings three power-

ful men finally accomplished the exhaustion. But,

meantime the air poured in through the joints of the

cask with a loud blast, and no vacuum was obtained.

In a subsequent experiment the small cask from which

the water was to be exhausted was immersed in a larger

one, likewise filled with water. But in this case, too, the

water gradually forced its way into the smaller cask.

Wood having proved in this way to be an unsuit-

able material for the purpose, and Guericke having re-

marked in the last experiment indications of success,

the philosopher now took a large hollow sphere of

copper and ventured to exhaust the air directly. At

the start the exhaustion was successfully and easily

conducted. But after a few strokes of the piston, the

pumping became so difficult that four stalwart men

(yiri quadrati), putting forth their utmost efforts, could

hardly budge the piston. And when the exhaustion

had gone still further, the sphere suddenly collapsed,

with a violent report. Finally by the aid of a copper

vessel of perfect spherical form, the production of the

vacuum was successfully accomplished. Guericke de-

scribes the great force with which the air rushed in on

the opening of the cock.

9. After these experiments Guericke constructed

an independent air-pump. A great glass globular re-

ceiver was mounted and closed by a large detachable

tap in which was a stop-cock. Through this opening

the objects to be subjected to experiment were placed
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in the receiver. To secure more perfect closure the Guericke's
air-pump.

receiver was made to stand, with its stop-cock under

water, on a tripod, beneath which the pump proper was

Guericke's Air-pump. {Experzm. Magdeb.)

placed. Subsequently, separate receivers, connected

with the exhausted sphere, were also employed in the

experiments.
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The curious The phenomena which Guericke observed with this

observed by apparatus are manifold and various. The noise which

the air- water in a vacuum makes on striking the sides of the
t ump.

giass receiver, the violent rush of air and water into

exhausted vessels suddenly opened, the escape on ex-

haustion of gases absorbed in liquids, the liberation of

their fragrance, as Guericke expresses it, were imme-

diately remarked. A lighted candle is extinguished

on exhaustion, because, as Guericke conjectures, it

derives its nourishment from the air. Combustion, as

his striking remark is, is not an annihilation, but a

transformation of the air.

A bell does not ring in a vacuum. Birds die in it.

Many fishes swell up, and finally burst. A grape is kept

fresh in vacuo for over half a year. •

By connecting with an exhausted cylinder a long

tube dipped in water, a water-barometer is constructed.

The column raised is 19-20 ells high; and Von Guericke

explained all the effects that had been ascribed to the

horror vacui by the principle of atmospheric pressure.

An important experiment consisted in the weighing

of a receiver, first when filled with air and then when

exhausted. The weight of the air was found to vary

with the circumstances ; namely, with the temperature

and the height of the barometer. According to Gue-

ricke a definite ratio of weight between air and water

does not exist.

The exped- But the deepest impression on the contemporary
merits relat- . . , . .

ingto at- world was made by the experiments relating to atmos-
mospheric . .

i , 1 i r i r *

pressure, pheric pressure. An exhausted sphere iormed 01 two

hemispheres tightly adjusted to one another was rent

asunder with a violent report only by the traction of

sixteen horses. The same sphere was suspended from
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a beam, and a heavily laden scale-pan was attached to

the lower half.

The cylinder of a large pump is closed by a piston.

To the piston a rope is tied which leads over a pulley

and is divided into numerous branches on which a

great number of men pull. The moment the cylinder is

connected with an exhausted receiver, the men at the

ropes are thrown to the ground. In a similar manner

a huge weight is lifted.

Guericke mentions the compressed-air gun as some- Guericke's
•

air-gun.

thing already known, and constructs independently an

instrument that might appropriately be called a rari-

fied-air gun. A bullet is driven by the external atmos-

pheric pressure through a suddenly exhausted tube,

forces aside at the end of the tube a leather valve which

closes it, and then continues its flight with a consider-

able velocity.

Closed vessels carried to the summit of a mountain

and opened, blow out air ; carried down again in the

same manner, they suck in air. From these and other

experiments Guericke discovers that the air is elastic.

10. The investigations of Guericke were continued The investi-

. Rations of

by an Englishman, Robert Boyle.* The new experi- Robert

ments which Boyle had to supply were few. He ob-

serves the propagation of light in a vacuum and the

action of a magnet through it ; lights tinder by means

of a burning glass ; brings the barometer under the re-

ceiver of the air-pump, and was the first to construct

a balance-manometer ["the statical manometer"].

The ebullition of heated fluids and the freezing of water

on exhaustion were first observed by him.

Of the air pump experiments common at the present

day may also be mentioned that with falling bodies,

* And published by him in 1660, before the work of Von Guericke.— Trans.
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The fail of which confirms in a simple manner the view of Galileo

vacuum. that when the resistance of the air has been eliminated

light and heavy bodies both fall with the same velo-

city. In an exhausted glass tube a leaden bullet and a

piece of paper are placed. Putting the tube in a ver-

tical position and quickly turning it about a horizontal

axis through an angle of 180 , both bodies will be seen

to arrive simultaneously at the bottom of the tube.

Quantita- Of the quantitative data we will mention the fol-
tive data. . . ..

lowing. The atmospheric pressure that supports a

column of mercury of 76 cm. is easily calculated from

the specific gravity 13-60 of mercury to be 1-0336 kg.

to 1 sq.cm. The weight of 1000 cu.cm. of pure, dry

air at 0° C. and 760 mm. of pressure at Paris at an ele-

vation of 6 metres will be found to be 1 -293 grams,

and the corresponding specific gravity, referred to

water, to be 0-001293.

Thediscov- ii. Guericke knew of only one kind of air. We
ery of other . - . . ..

gaseous may imagine therefore the excitement it created when
'

in 1755 Black discovered carbonic acid gas (fixed air)

and Cavendish in 1766 hydrogen (inflammable air),

discoveries which were soon followed by other similar

ones. The dissimilar

physical properties of

gases are very strik-

ing. Faraday has il-

lustrated their great

inequality of weight

by a beautiful lecture-

experiment. If from

a balance in equilib-
Fig.

rium, we suspend (Fig. 84) two beakers A, B, the one

in an upright position and the other with its opening

downwards, we may pour heavy carbonic acid gas from
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above into the one and light hydrogen from beneath

into the other. In both instances the balance turns in

the direction of the arrow. To-day, as we know, the

decanting of gases can be made directly visible by the

optical method of Foucault and Toeppler.

12. Soon after Torricelli's discovery, attempts were The mercu-

made to employ practically the vacuum thus produced, pump.

The so-called mercurial air-pumps were tried. But no

such instrument was successful until the present cen-

tury. The mercurial air-pumps now in common use

are really barometers of which the extremities are sup-

plied with large expansions and so connected that their

difference of level may be easily varied. The mercury

takes the place of the piston of the ordinary air-pump.

13. The expansive force of the air, a property ob- Boyle's law.

served by Guericke, was more accurately investigated

by Boyle, and, later, by Mariotte. The law which

both found is as follows. If Vbe called the volume of

a given quantity of air and P its pressure on unit area

of the containing vessel, then the product V. P is

always = a constant quantity. If the volume of the

enclosed air be reduced one-half, the air will exert

double the pressure on unit of area ; if the volume of

the enclosed quantity be doubled, the pressure will

sink to one-half ; and so on. It is quite correct—as a

number of English writers have maintained in recent

times—that Boyle and not Mariotte is to be regarded

as the discoverer of the law that usually goes by

Mariotte's name. Not only is this true, but it must

also be added that Boyle knew that the law did not

hold exactly, whereas this fact appears to have escaped

Mariotte.

The method pursued by Mariotte in the ascertain-

ment of the law was very simple. He partially filled

\
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m

His appa-
ratus.

Mariotte's Torricellian tubes with mercury, measured the volume

mems." of the air remaining, and then performed the Torricel-

lian experiment. The new volume of

air was thus obtained, and by subtract-

ing the height of the column of mer-

cury from the barometer-height, also

the new pressure to which the same

quantity of air was now subjected.

To condense the air Mariotte em-

ployed a siphon-tube with vertical

arms. The smaller arm in which the

air was contained was sealed at the

upper end ; the longer, into which the

mercury was poured, was open at the

upper end. The volume of the air

was read off on the graduated tube,

and to the difference of level of the

mercury in the two arms the barometer-

height was added. At the present day

both sets of experiments are performed

in the simplest manner by fastening a

cylindrical glass tube (Fig. 86) rr,

closed at the top, to a vertical scale

and connecting it by a caoutchouc

tube kk with a second open glass tube

r'r', which is movable up and down

the scale. If the tubes be partly filled

with mercury, any difference of level

whatsoever of the two surfaces of mer-

cury may be produced by displacing

r r
y
and the corresponding variations of volume of the

air enclosed in r r observed.

It struck Mariotte on the occasion of his investiga-

tions that any small quantity of air cut off completely

Fig. 86.
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from the rest of the atmosphere and therefore notTheexpan
t -ii 1

sive force of

directly affected by the latter's weight, also supported isolated

. . portions of

the barometer-column ; as where, to give an instance, the atmos-
• rr^t ' phere.

the open arm of a barometer-tube is closed. The simple

explanation of this phenomenon, which, of course,

Mariotte immediately found, is this, that the air before

enclosure must have been compressed to a point at

which its tension balanced the gravitational pressure

of the atmosphere ; that is to say, to a point at which

it exerted an equivalent elastic pressure.

We shall not enter here into the details of the ar-

rangement and use of air-pumps, which are readily

understood from the law of Boyle and Mariotte.

14. It simply remains for us to remark, that the dis-

coveries of aerostatics furnished so much that was new
and wonderful that a valuable intellectual stimulus pro-

ceeded from the science.



CHAPTER II.

THE DEVELOPMENT OF THE PRINCIPLES OF

DYNAMICS.

Dynamics
wholly a
modern
science.

Galileo's achievements.

i. We now pass to the discussion of the funda-

mental principles of dynamics. This is entirely a mod-

ern science. The mechanical speculations of the an-

cients, particularly of the Greeks, related wholly to

statics. Dynamics was founded by Galileo. We shall

readily recognise the correctness of this assertion if we

but consider a moment a few propositions held by the

Aristotelians of Galileo's time. To explain the descent

of heavy bodies and the rising of light bodies, (in li-

quids for instance,) it was assumed that every thing and

object sought its place : the place of heavy bodies was

below, the place of light bodies was above. Motions

were divided into natural motions, as that of descent,

and violent motions, as, for example, that of a pro-

jectile. From some few superficial experiments and

observations, philosophers had concluded that heavy

bodies fall more quickly and lighter bodies more slowly,

or, more precisely, that bodies of greater weight fall

more quickly and those of less weight more slowly. It

is sufficiently obvious from this that the dynamical

knowledge of the ancients, particularly of the Greeks,

was very insignificant, and that it was left to modern



THE PRINCIPLES OF D YNAMICS. 129

times to lay the true foundations of this department of

inquiry. (See Appendix, VII., p. 520.)

f." Zucchi sculp.

2. The treatise Discorsi e dimostrazioni maiematiche,

in which Galileo communicated to the world the first
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Galileo's dynamical investigation of the laws of falling bodies,

doToflhe appeared in 1638. The modern spirit that Galileo dis-

ingbodies. covers is evidenced here, at the very outset, by the fact

that he does not ask why heavy bodies fall, but pro-

pounds the question, How do heavy bodies fall ? in

agreement with what law do freely falling bodies move?

The method he employs to ascertain this law is this.

He makes certain assumptions. He does not, however,

like Aristotle, rest there, but endeavors to ascertain by

trial whether they are correct or not.

His first, The first theory on which he lights is the following.

theory°
US

It seems in his eyes plausible that a freely falling body,

inasmuch as it is plain that its velocity is constantly

on the increase, so moves that its velocity is double

after traversing double the distance, and triple after

traversing triple the distance ; in short, that the veloci-

ties acquired in the descent increase proportionally

to the distances descended through. Before he pro-

ceeds to test experimentally this hypothesis, he reasons

on it logically, implicates himself, however, in so doing,

in a fallacy. He says, if a body has acquired a certain

velocity in the first distance descended through, double

the velocity in double such distance descended through,

and so on ; that is to say, if the velocity in the second

instance is double what it is in the first, then the double

distance will be traversed in the same time as the origi-

nal simple distance. If, accordingly, in the case of

the double distance we conceive the first half trav-

ersed, no time will, it would seem, fall to the account

of the second half. The motion of a falling body ap-

pears, therefore, to take place instantaneously ; which

not only contradicts the hypothesis but also ocular evi-

dence. We shall revert to this peculiar fallacy of

Galileo's later on.
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3. After Galileo fancied he had discovered this as- His second,

#
correct, as-

sumption to be untenable, he made a second one, ac- sumption.

cording to which the velocity acquired is proportional

to the time of the descent. That is, if a body fall once,

and then fall again during twice as long an interval of

time as it first fell, it will attain in the second instance

double the velocity it acquired in the first. He found

no self-contradiction in this theory, and he accordingly

proceeded to investigate by experiment whether the

assumption accorded with observed facts. It was dif-

ficult to prove by any direct means that the velocity

acquired was proportional to the time of descent. It

was easier, however, to investigate by what law the

distance increased with the time ; and he consequently

deduced from his assumption the relation that obtained

between the distance and the time, and tested this by

experiment. The deduction

is simple, distinct, and per-

fectly correct. He draws

(Fig. 87) a straight line, and

on it cuts off successive por-

tions that represent to him Fig- 87-

the times elapsed. At the extremities of these por-

tions he erects perpendiculars (ordinates), and these

represent the velocities acquired. Any portion OG of

the line OA denotes, therefore, the time of descent

elapsed, and the corresponding perpendicular GH the

velocity acquired in such time.

If, now, we fix our attention on the progress of the

velocities, we shall observe with Galileo the following

fact : namely, that at the instant C, at which one-half

OC of the time of descent OA has elapsed, the velocity

CD is also one-half of the final velocity AB.
If now we examine two instants of time, E and G,
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Uniformly equally distant in opposite directions from the instant

motion"*
e

C, we shall observe that the velocity HG exceeds the

mean velocity CD by the same amount that EF falls

short of it. For every instant antecedent to C there

exists a corresponding one equally distant from it sub-

sequent to C. Whatever loss, therefore, as compared

with uniform motion with half the final velocity, is suf-

fered in the first half of the motion, such loss is made

up in the second half. The distance fallen through we

may consequently regard as having been uniformly de-

scribed with half the final velocity. If, accordingly,

we make the final velocity v proportional to the time

of descent /, we shall obtain v = gl, where g denotes

the final velocity acquired in unit of time—the so-called

acceleration. The space s descended through is there-

fore given by the equation s = (gt/2) t or s = g/ 2 /2.

Motion of this sort, in which, agreeably to the assump-

tion, equal velocities constantly accrue in equal inter-

vals of time, we call uniformly accelerated motion.

Tabieofthe If we collect the times of descent, the final veloci-

lodtfesTInd ties, and the distances traversed, we shall obtain the
distances of . ., . .11
descent. following table :

/. V. s.

i. 1^. 1 X 1 • f
2. 2g. 2 X 2 . I

3. 3- 3 X 3 .

-J-

4. *g 4 X 4 . |-

tg. t x /
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4. The relation obtaining between / and s admits Experimen-
T" ° tal verinca-

of experimental proof ; and this Galileo accomplished don of the

in the manner which we shall now describe.

We must first remark that no part of the knowledge

and ideas on this subject with which we are now so

familiar, existed in Galileo's time, but that Galileo had

to create these ideas and means for us. Accordingly,

it was impossible for him to proceed as we should do

to-day, and he was obliged, therefore, to pursue a dif-

ferent method. He first sought to retard the motion

of descent, that it might be more accurately observed.

He made observations on balls, which he caused to

roll down inclined planes (grooves); assuming that only

the velocity of the motion would be lessened here, but

that the form of the law of descent would remain un-

modified. If, beginning from the upper extremity, theTheartj-

distances 1, 4, 9, 16 ... be notched off on the groove, ployed,

the respective times of descent will be representable,

it was assumed, by the numbers 1, 2, 3, 4 . . . ;
a result

which was, be it added, confirmed. The observation of

the times involved, Galileo accomplished in a very in-

genious manner. There were no clocks of the modern

kind in his day : such were first rendered possible by

the dynamical knowledge of which Galileo laid the

foundations. The mechanical clocks which were used

were very inaccurate, and were available only for the

measurement of great spaces of time. Moreover, it

was chiefly water-clocks and sand-glasses that were in

use in the form in which they had been handed down

from the ancients. Galileo, now, constructed a very

simple clock of this kind, which he especially adjusted

to the measurement of small spaces of time ; a thing

not customary in those days. It consisted of a vessel of

water of very large transverse dimensions, having in
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Galileo's the bottom a minute orifice which was closed with the

finger. As soon as the ball began to roll down the in-

clined plane Galileo removed his finger and allowed the

water to flow out on a balance ; when the ball had ar-

rived at the terminus of its path he closed the orifice.

As the pressure-height of the fluid did not, owing to

the great transverse dimensions of the vessel, percept-

ibly change, the weights of the water discharged from

the orifice were proportional to the times. It was in

this way actually shown that the times increased simply,

while the spaces fallen through increased quadratically.

The inference from Galileo's assumption was thus con-

firmed by experiment, and with it the assumption itself.

Thereia- 5. To form some notion of the relation which sub-
tion of mo-
tion on an sists between motion on an inclined plane and that of
inclined

. .

plane to free descent, Galileo made the assumption, that a body
that of free

r J

descent. which falls through the height of an inclined plane

attains the same final velocity as a body which falls

through its length. This is an assumption that will

strike us as rather a bold one ; but in the manner in

which it was enunciated and employed by Galileo, it is

quite natural. We shall endeavor to explain the way by

which he was led to it. He says : If a body fall freely

downwards, its velocity increases proportionally to the

time. When, then, the body has arrived at a point be-

low, let us imagine its velocity reversed and directed

upwards ; the body then, it is clear, will rise. We make
the observation that its motion in this case is a reflection,

so to speak, of its motion in the first case. As then its

velocity increased proportionally to the time of descent,

it will now, conversely, diminish in that proportion.

When the body has continued to rise for as long a

time as it descended, and has reached the height from

which it originally fell, its velocity will be reduced to
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zero. We perceive, therefore, that a body will rise, justifica-

. j . tion of the

in virtue of the velocity acquired in its descent, mst as assumption

1-1 r 11-
that the

/«>// as it has fallen. If, accordingly, a body falling final veioc-...... itiesofsuch
down an inclined plane could acquire a velocity which motions are

til6 S3.1X16

would enable it, when placed on a differently inclined

plane, to rise higher than the point from which it had

fallen, we should be able to effect the elevation of

bodies by gravity alone. There is contained, accord-

ingly, in this assumption, that the velocity acquired by

a body in descent depends solely on the vertical height

fallen through and is independent of the inclination of

the path, nothing more than the uncontradictory ap-

prehension and recognition of thefact that heavy bodies

do not possess the tendency to rise, but only the ten-

dency to fall. If we should assume that a body fall-

ing down the length of an inclined plane in some way

or other attained a greater velocity than a body that

fell through its height, we should only have to let the

body pass with the acquired velocity to another in-

clined or vertical plane to make it rise to a greater ver-

tical height than it had fallen from. And if the velo-

city attained on the inclined plane were less, we should

only have to reverse the process to obtain the same re-

sult. In both instances a heavy body could, by an ap-

propriate arrangement of inclined planes, be forced

continually upwards solely by its own weight—a state

of things which wholly contradicts our instinctive

knowledge of the nature of heavy bodies. (See p. 522.)

6. Galileo, in this case, again, did not stop with

the mere philosophical and logical discussion of his

assumption, but tested it by comparison with expe-

rience.

He took a simple filar pendulum (Fig. 88) with a

heavy ball attached. Lifting the pendulum, while



136 THE SCIENCE OE MECHANICS.

Galileo's elongated its full length, to the level of a given altitude,

tai
P
ver?fi

e
c

n
a- and then letting it fall, it ascended to the same level

tion of this , . . , Tr . -i , j va,
assumption on the opposite side. If it does not do so exactly,

Galileo said, the resistance of the air must be the cause

of the deficit. This is inferrible from the fact that the

deficiency is greater in the case of a cork ball than it is

Effected by in the case of a heavy metal one. However, this neg-

fmpedmg lected, the body ascends to the same altitude on the

Sa pendu- opposite side. Now it is permissible to regard the mo-
lum string. ^.^ ^ ^ pendulum in the arc of a circle as a motion

of descent along a series of inclined planes of different

inclinations. This seen, we can, with Galileo, easily

cause the body to rise on a different arc—on a different

series of inclined planes. This we accomplish by driv-

ing in at one side of the thread, as it vertically hangs,

a nail/or^-, which will prevent any given portion of

the thread from taking part in the second half of the

motion. The moment the thread arrives at the line of

equilibrium and strikes the nail, the ball, which has

fallen through ba, will begin to ascend by a different

series of inclined planes, and describe the arc am or an.

Now if the inclination of the planes had any influence
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on the velocity of descent, the body could not rise to

the same horizontal level from which it had fallen.

But it does. By driving the nail sufficiently low down,

we may shorten the pendulum for half of an oscillation

as much as we please ; the phenomenon, however, al-

ways remains the same. If the nail h be driven so low

down that the remainder of the string cannot reach to

the plane £, the ball will turn completely over and

wind the thread round the nail ; because when it has

attained the greatest height it can reach it still has a

residual velocity left.

7. If we assume thus, that the same final velocity is
^JJ^g"on

attained on an inclined plane whether the body fall 1^/°^
through the height or the length of the plane,—in which

â
e
t n̂

c
s

el "

assumption nothing more is contained than that a body sought,

rises by virtue of the velocity it has acquired in falling

just as high as it has fallen,—we shall easily arrive,

with Galileo, at the perception that the times of the de-

scent along the height and the length of an inclined

plane are in the simple proportion of the height and

the length ; or, what is the same, that the accelerations

are inversely proportional to the times of descent.

The acceleration along the height will consequently

bear to the acceleration along ^
the length the proportion of the

length to the height. Let AB
(Fig. 89) be the height and AC &-

the length of the inclined plane. Fig. 89.

Both will be descended through in uniformly accel-

erated motion in the times / and t
1
with the final ve-

locity v. Therefore,

v , „ v AB t

AB = ^t and AC=
2

t
x , ^^= —

.
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If the accelerations along the height and the length be

called respectively g and g lf we also have

v= gt and v = g. t., whence -^ = —= — -^ = sin a.d 1 L g t
x

AC
In this way we are able to deduce from the accel-

eration on an inclined plane the acceleration of free

descent.

a corollary From this proposition Galileo deduces several cor-
of the pre- . 1

.
,

ceding law. ollaries, some of which have passed into our elementary

text-books. The accelerations along the height and

length are in the inverse proportion of the height and

length. If now we cause one body to fall along the

length of an inclined plane and simultaneously another

to fall freely along its height, and ask what the dis-

tances are that are traversed by the two in equal inter-

vals of time, the solution of the problem will be readily

found (Fig. 90) by simply letting fall from B a perpen-

dicular on the length. The part AD, thus cut off, will

be the distance traversed by the one body on the in-

clined plane, while the second body is freely falling

through the height of the plane.

A

Fig. 90. Fig. 91.

Relative If we describe (Fig. 91) a circle on AB as diame-

scTfption of ter, the circle will pass through D, because D is a

aiddiame
5

- right angle. It will be seen thus, that we can imagine

c!es.°

Cir
" any number of inclined planes, AE, AF, of any degree

of inclination, passing through A, and that in every
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v X7 ing in theWe chords of
circles.

case the chords AG, A

H

drawn in this circle from the

upper extremity of the diameter will be traversed in

the same time by a falling body as the vertical diame-

ter itself. Since, obviously, only the lengths and in-

clinations are essential here, we may also draw the

chords in question from the lower extremity of the

diameter, and say generally : The vertical diameter

of a circle is described by a falling particle in the same

time that any chord through either extremity is so

described.

We shall present another corollary, which, in the The figures

pretty form in which Galileo gave it, is usually no bodies f^ii-

longer incorporated in elementary expositions,

imagine gutters radiating in a vertical plane from a

common point A at a

number of different

degrees of inclination

to the horizon (Fig.

92). We place at their

common extremity A
a like number of heavy

bodies and cause them

to begin simultaneous-

ly their motion of des-

cent. The bodies will

always form at any one

instant of time a circle. After the lapse of a longer time

they will be found in a circle of larger radius, and the

radii increase proportionally to the squares of the

times. If we imagine the gutters to radiate in a space

instead of a plane, the falling bodies will always form

a sphere, and the radii of the spheres will increase pro-

portionally to the squares of the times. This will be
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perceived by imagining the figure revolved about the

vertical A V.

Character 8. We see thus,—as deserves again to be briefly
of Galileo's . . . ..

inquiries, noticed,—that Galileo did not supply us with a theory

of the falling of bodies, but investigated and estab-

lished, wholly without preformed opinions, the actual

facts of falling.

Gradually adapting, on this occasion, his thoughts

to the facts, and everywhere logically abiding by the

ideas he had reached, he hit on a conception, which to

himself, perhaps less than to his successors, appeared

in tiie light of a new law. In all his reasonings, Galileo

followed, to the greatest advantage of science, a prin-

ciple which might appropriately be called the principle

Theprin- of continuity. Once we have reached a theory that ap-
ciple of . 1111
continuity, plies to a particular case, we proceed gradually to

modify in thought the conditions of that case, as far

as it is at all possible, and endeavor in so doing to

adhere throughout as closely as we can to the concep-

tion originally reached. There is no method of pro-

cedure more surely calculated to lead to that compre-

hension of all natural phenomena which is the simplest

and also attainable with the least expenditure of men-

tality and feeling. (Compare Appendix, IX., p. 523.)

A particular instance will show more clearly than

any general remarks what we mean. Galileo con-

B
Fig- 93-

siders (Fig. 93) a body which is falling down the in-

clined plane AB, and which, being placed with the
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velocity thus acquired on a second plane BC, for ex- Galileo's
J -1 discovery

ample, ascends this second plane. On all planes BC, of theso-
r r called law

BZ), and so forth, it ascends to the horizontal plane of inertia,

that passes through A. But, just as it falls on BD
with less acceleration than it does on BC, so similarly

it will ascend on BD with less retardation than it will

on BC The nearer the planes BC, BD, BE, BF ap-

proach to the horizontal plane BH, the less will the

retardation of the body on those planes be, and the

longer and further will it move on them. On the hori-

zontal plane BH the retardation vanishes entirely (that

is, of course, neglecting friction and the resistance of

the air), and the body will continue to move infinitely

long and infinitely far with constant velocity. Thus ad-

vancing to the limiting case of the problem presented,

Galileo discovers the so-called law of inertia, according

to which a body not under the influence of forces, i. e.

of special circumstances that change motion, will re-

tain forever its velocity (and direction). We shall

presently revert to this subject.

o. The motion of falling that Galileo found actually The deduo
• -ri-ii 1 •

tion of the

to exist, is, accordingly, a motion of wnich the velocity idea of uni~

11 1 11 j formly ac-

mcreases proportionally to the time—a so-called uni- ceierated
motion.

formly accelerated motion.

It would be an anachronism and utterly unhistorical

to attempt, as is sometimes done, to derive the uniformly

accelerated motion of falling bodies from the constant

action of the force of gravity. " Gravity is a constant

force ; consequently it generates in equal elements of

time equal increments of velocity ; thus, the motion

produced is uniformly accelerated." Any exposition

such as this would be unhistorical, and would put the

whole discovery in a false light, for the reason that the

notion of force as we hold it to-day was first created
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Forces and by Galileo. Before Galileo force was known solely as

tions
era

"

pressure. Now, no one can know, who has not learned

it from experience, that generally pressure produces

motion, much less in what manner pressure passes into

motion ; that not position, nor velocity, but accelera-

tion, is determined by it. This cannot be philosophi-

cally deduced from the conception, itself. Conjectures

may be set up concerning it. But experience alone can

definitively inform us with regard to it.

10. It is not by any means self-evident, therefore,

that the circumstances which determine motion, that

is, forces, immediately produce accelerations. A glance

at other departments of physics will at once make this

clear. The differences of temperature of bodies also

determine alterations. However, by differences of tem-

perature not compensatory accelerations are deter-

mined, but compensatory velocities.

The fact That it is accelerations which are the immediate ef-

determin? fects of the circumstances that determine motion, that

tion
e
s?s

a
Jn is, of the forces, is a fact which Galileo perceived in the

tai
P
fa

r

ct
ei1

" natural phenomena. Others before him had also per-

ceived many things. The assertion that everything seeks

its place also involves a correct observation. The ob-

servation, however, does not hold good in all cases,

and it is not exhaustive. If we cast a stone into the

air, for example, it no longer seeks its place; since its

place is below. But the acceleration towards the earth,

the retardation of the upward motion, the fact that Ga-

lileo perceived, is still present. His observation always

remains correct ; it holds true more generally ; it em-

braces in one mental effort much more.

ii. We have already remarked that Galileo dis-

covered the so-called law of inertia quite incidentally.

A body on which, as we are wont to say, no force acts,
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preserves its direction and velocity unaltered. The History of

fortunes of this law of inertia have been strange. It called law
. , . . . of inertia.

appears never to have played a prominent part in Gali-

leo's thought. But Galileo's successors, particularly

Huygens and Newton, formulated it as an independent

law. Nay, some have even made of inertia a general

property of matter. We shall readily perceive, how-

ever, that the law of inertia is not at all an indepen-

dent law, but is contained implicitly in Galileo's per-

ception that all circumstances determinative of motion,

or forces, produce accelerations.

In fact, if a force determine, not position, not velo-Theiawa
. r 1

simple in-

city, but acceleration, change of velocity, it stands to ference

reason that where there is no force there will be no leo's funda-
. . . mental ob-

change of velocity. It is not necessary to enunciate servation.

this in independent form. The embarrassment of the

neophyte, which also overcame the great investigators

in the face of the great mass of new material presented,

alone could have led them to conceive the same fact as

two different facts and to formulate it twice.

In any event, to represent inertia as self-evident, or Erroneous
. , , . . -, 1 r

methods of
to derive it from the general proposition that "the et- deducing it.

feet of a cause persists," is totally wrong. Only a

mistaken straining after rigid logic can lead us so out

of the way. Nothing is to be accomplished in the pres-

ent domain with scholastic propositions like the one

just cited. We may easily convince ourselves that the

contrary proposition, " cessante causa cessat effectus,"

is as well supported by reason. If we call the acquired

velocity "the effect," then the first proposition is cor-

rect ; if we call the acceleration "effect," then the sec-

ond proposition holds.

12. We shall now examine Galileo's researches from

another side. He began his investigations with the
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Notion of notions familiar to his time—notions developed mainly

it

e
exfsted

a
fn in the practical arts. One notion of this kind was that

time
e
°

S

of velocity, which is very readily obtained from the con-

sideration of a uniform motion. If a body traverse in

every second of time the same distance c, the distance

traversed at the end of / seconds will be s = ct. The

distance c traversed in a second of time we call the ve-

locity, and obtain it from the examination of any por-

tion of the distance and the corresponding time by the

help of the equation c = s/t, that is, by dividing the

number which is the measure of the distance traversed

by the number which is the measure of the time elapsed.

Now, Galileo could not complete his investigations

without tacitly modifying and extending the traditional

idea of velocity. Let us represent for distinctness sake

Bk

B.

,2

As

Fig. 94.

in 1 (Fig. 94) a uniform motion, in 2 a variable motion,

by laying off as abscissae in the direction OA the elapsed

times, and erecting as ordinates in the direction AB the

distances traversed. Now, in 1, whatever increment

of the distance we may divide by the corresponding in-

crement of the time, in all cases we obtain for the ve-

locity c the same value. But if we were thus to proceed

in 2, we should obtain widely differing values, and

therefore the word l c velocity " as ordinarily understood,

ceases in this case to be unequivocal. If, however, we

consider the increase of the distance in a sufficiently
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small element of time, where the element of the curve Galileo's

1 -ii- 11 modifica-
in 2 approaches to a straight line, we may regard the tion of this

rr^i - - 1 •
notion.

increase as uniform. The velocity in this element of

the motion we may then define as the quotient, A s/A /,

of the element of the time into the corresponding ele-

ment of the distance. Still more precisely, the velocity

at any instant is defined as the limiting value which

the ratio A s/A t assumes as the elements become in-

finitely small—a value designated by ds/dt. This new
notion includes the old one as a particular case, and is,

moreover, immediately applicable to uniform motion.

Although the express formulation of this idea, as thus

extended, did not take place till long after Galileo, we
see none the less that he made use of it in his reason-

ings.

13. An entirely new notion to which Galileo was The notion

led is the idea of acceleration. In uniformly acceler- tion.

ated motion the velocities increase with the time

agreeably to the same law as in uniform motion the

spaces increase with the times. If we call v the velo-

city acquired in time /, then v = gt. Here g denotes

the increment of the velocity in unit of time or the ac-

celeration, which we also obtain from the equation

g— v/t. When the investigation of variably accel-

erated motions was begun, this notion of accelera-

tion had to experience an extension similar to that of

the notion of velocity. If in 1 and 2 the times be again

drawn as abscissae, but now the velocities as ordinates,

we may go through anew the whole train of the pre-

ceding reasoning and define the acceleration as dv/dt,

where dv denotes an infinitely small increment of the

velocity and dt the corresponding increment of the

time. In the notation of the differential calculus we
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have for the acceleration of a rectilinear motion, cp ==.

dv/dt = d*s/dt*.

Graphic The ideas here developed are susceptible, moreover,
jepresenta- ^ graphic representation. If we lay off the times as
theseideas<

abscissas and the distances as ordinates, we shall per-

ceive, that the velocity at each instant is measured by

the slope of the curve of the distance. If in a similar

manner we put times and velocities together, we shall

see that the acceleration of the instant is measured by

the slope of the curve of the velocity. The course of

the latter slope is, indeed, also capable of being traced

in the curve of distances, as will be perceived from

the following considerations. Let us imagine, in the

Fig. 95.

The curve usual manner (Fig. 95), a uniform motion represented
lstance

' by a straight line OCD. Let us compare with this a

motion OCE the velocity of which in the second half

of the time is greater, and another motion OCF of

which the velocity is in the same proportion smaller.

In the first case, accordingly, we shall have to erect for

the time OB = 2 OA, an ordinate greater than BD =
2 AC; in the second case, an ordinate less than BD.

We see thus, without difficulty, that a curve of dis-

tance convex to the axis of the time-abscissae corre-

sponds to accelerated motion, and a curve concave

thereto to retarded motion. If we imagine a lead-pen-

cil to perform a vertical motion of any kind and in
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front of it during its motion a piece of paper to be uni-

formly drawn along from right to left and the pencil to

thus execute the drawing in Fig. 96, we shall be able to

read off from the drawing the peculiarities of the mo-

tion. At a the velocity of the pencil was directed up-

wards, at b it was greater, at c it was = 0, at d it was

directed downwards, at e it was again = 0. At a, b,

d, e, the acceleration was directed upwards, at c down-

wards ; at c and e it was greatest.

14.. The summary representation of what Galileo Tabular
« j r present-

discovered is best made by a table of times, acquired mem of pa-
J hleo s dis-

covery.
/. V . S .

2 2g 4|

3 Sg 9f

t tg / 2

-f-

velocities, and traversed distances. But the numbers The table

. -11 may be re_

follow so simple a law,—one immediately recognisable, placed by
r 1-1 rules for its

that there is nothing to prevent our replacing the construc-

• tion *

table by a rule for its construction. If we examine the

relation that connects the first and second columns, we

shall find that it is expressed by the equation v = gt,

which, in its last analysis, is nothing but an abbrevi-

ated direction for constructing the first two columns

of the table. The relation connecting the first and third

columns is given by the equation s = g / 2 /2. The con-

nection of the second and third columns is represented

by s = v 2 /2g.
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rhe rules. Of the three relations

v = gt

_gt 2

V 2

strictly, the first two only were employed by Galileo.

Huygens was the first who evinced a higher apprecia-

tion of the third, and laid, in thus doing, the founda-

tions of important advances.

a remark 15. We may add a remark in connection with

tioncff th e
a
"this table that is very valuable. It has been stated

the^mes. previously that a body, by virtue of the velocity it has

acquired in its fall, is able to rise again to its origi-

nal height, in doing which its velocity diminishes in

the same way (with respect to time and space) as it

increased in falling. Now a freely falling body ac-

quires in double time of descent double velocity, but

falls in this double time through four times the simple

distance. A body, therefore, to which we impart a ver-

tically upward double velocity will ascend twice as

long a time, but four times as high as a body to which

the simple velocity has been imparted.

The dispute It was remarked, very soon after Galileo, that there

tesians and is inherent in the velocity of a body a something that

iansonthe corresponds to a force—a something, that is, by which
measure of . . —

,,
. u

force. a force can be overcome, a certain "efficacy, as it has

been aptly termed. The only point that was debated

was, whether this efficacy was to be reckoned propor-

tional to the velocity or to the square of the velocity.

The Cartesians held the former, the Leibnitzians the

latter. But it will be perceived that the question in-

volves no dispute whatever. The body with the double

velocity overcomes a given force through double the
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time, but through four times the distance. With re-

spect to time, therefore, its efficacy is proportional to

the velocity ; with respect to distance, to the square of

the velocity. D'Alembert drew attention to this mis-

understanding, although in not very distinct terms. It

is to be especially remarked, however, that Huygens's

thoughts on this question were perfectly clear.

r6. The experimental procedure by which, at the The present
r r

. expenmen-

present day, the laws of falling bodies are verified, is taimeansof

somewhat different from that of Galileo. Two methods the laws of

. tailing boa-

may be employed. Either the motion of falling, which ies.

from its rapidity is difficult to observe directly, is so

retarded, without altering the law, as to be easily ob-

served ; or the motion of falling is not altered at all,

but our means of observation are improved in deli-

cacy. On the first principle Galileo's inclined

gutter and Atwood's machine rest. Atwood's

machine consists (Fig. 97) of an easily run-

ning pulley, over which is thrown a thread,

to wrhose extremities two equal weights P are

attached. If upon one of the weights P we

lay a third small weight p, a uniformly accel- ftp

erated motion will be set up by the added Fi &- 97-

weight, having the acceleration (p/2 ~P~-\- f) g—a result

that will be readily obtained when we shall have dis-

cussed the notion of "mass." Now by means of a

graduated vertical standard connected with the pulley

it may easily be shown that in the times 1, 2, 3, 4 ... .

the distances 1, 4, 9, 16 . . . . are traversed. The final

velocity corresponding to any given time of descent is

investigated by catching the small additional weight,/,

which is shaped so as to project beyond the outline of

P, in a ring through which the falling body passes,

after which the motion continues without acceleration.

P+P
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The appa- The apparatus of Morin is based on a different prin-
ratus of aii i

• • • •

Morin, La- ciple. A body to which a writing pencil is attached
borde, Lip-

J & r
pich, and describes on a vertical sheet of paper, which is drawn
Von Babo. .

xr r
>

uniformly across it by a clock-work, a horizontal straight

line. If the body fall while the paper is not in motion,

it will describe a vertical straight line. If the two

motions are combined, a parabola will be produced,

of which the horizontal abscissae correspond to- the

elapsed times and the vertical ordinates to the dis-

tances of descent described. For the abscissae i, 2,

3, 4 .... we obtain the ordinates 1, 4, 9, 16 ... . By
an unessential modification, Morin employed instead of

a plane sheet of paper, a rapidly rotating cylindrical

drum with vertical axis, by the side of which the body

fell down a guiding wire. A different apparatus, based

on the same principle, was invented, independently, by

Laborde, Lippich, and Von Babo. A lampblacked

sheet of glass (Fig. g8a) falls freely, while a horizon-

tally vibrating vertical rod, which in its first transit

through the position of equilibrium starts the motion

of descent, traces, by means of a quill, a curve on the

lampblacked surface. Owing to the constancy of the

period of vibration of the rod combined with the in-

creasing velocity of the descent, the undulations traced

by the rod become longer and longer. Thus (Fig. 98)

bc=^ab, cd= ^ab, de = yab, and so forth. The
law of falling bodies is clearly exhibited by this, since

ab J
r cb = /\ab, ab-\-bc-\-cd= c)ab, and so forth.

The law of the velocity is confirmed by the inclinations

of the tangents at the points a, b, c, d, and so forth. If

the time of oscillation of the rod be known, the value

of g is determinable from an experiment of this kind

with considerable exactness.

Wheatstone employed for the measurement of mi-
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nute portions of time a rapidly operating clock-work The de-

called a chronoscope, which is set in motion at the be- wheat-

r ii ?tone and
ginning of the time to be measured and stopped at the Hipp,

termination of it. Hipp has advantageously modified

Fig. 98a.

this method by simply causing a light index-hand to

be thrown by means of a clutch in and out of gear with

a rapidly moving wheel-work regulated by a vibrating

reed of steel tuned to a high note, and acting as an es-
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Galileo's
minor in-

vestiga-
tions.

capement. The throwing in and out of gear is effected

by an electric current. Now if, as soon as the body be-

gins to fall, the current be interrupted, that is the hand

thrown into gear, and as soon as the body strikes the

platform below the current is closed, that is the hand

thrown out of gear, we can read by the distance the

index-hand has travelled the time of descent.

17. Among the further achievements of Galileo we

have yet to mention his ideas concerning the motion

of the pendulum, and his refutation of the view that

bodies of greater weight fall faster than bodies of less

weight. We shall revert to both of these points on an-

other occasion. It may be stated here, however, that

Galileo, on discovering the constancy of the period of

pendulum-oscillations, at once applied the pendulum

to pulse-measurements at the sick-bed, as well as pro-

posed its use in astronomical observations and to a cer-

tain extent employed it therein himself.

The motion 1 8. Of still greater importance are his investiga-
o projec-

t £ons concerning the motion of projectiles. A free body,

according to Galileo's view, constantly experiences a

vertical acceleration g towards the earth. If at the

beginning of its motion it is affected with a vertical

v velocity c, its velocity at the

end of the time / will be v =
c -f- gt. An initial velocity up-

wards would have to be reck-

oned negative here. The dis-

v
tance described at the end of

time t is represented by the

equation s= a -\- c t -\~ \gt 2
, where ct and ±gt 2 are the

portions of the traversed distance that correspond re-

spectively to the uniform and the uniformly accelerated

motion. The constant a is to be put= when we reckon

tiles.

X
Fig. 99.
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the distance from the point that the body passes at time

/= 0. When Galileo had once reached his fundamental

conception of dynamics, he easily recognised the case

of horizontal projection as a combination of two inde-

pendent motions, a horizontal uniform motion, and a

vertical uniformly accelerated motion. He thus intro-

duced into use the principle of the parallelogram of mo-

tions. Even oblique projection no longer presented the

slightest difficulty.

If a body receives a horizontal velocity c, it de- The curve•ii- it • •
1 j- of projec-

scnbes in the horizontal direction in time / the distance tion a par-

y = ct, while simultaneously it falls in a vertical direc-

tion the distance x =gt 2 /2. Different motion-deter-

minative circumstances exercise no mutual effect on one

another, and the motions determined by them take

place independently of each other. Galileo was led to

this assumption by the attentive observation of the

phenomena ; and the assumption proved itself true.

For the curve which a body describes when the two

motions in question are compounded, we find, by em-

ploying the two equations above given, the expression

y = 1/(2 c

~

2
/g) x. It is the parabola of Apollonius hav-

ing its parameter equal to c 2 /g and its axis vertical,

as Galileo knew.

We readily perceive with Galileo, that oblique pro- oblique

rr^i 1 • •
1
projection:

jection involves nothing new. I he velocity c imparted

to a body at the angle a with the horizon is resolvable

into the horizontal component c . cos or and the vertical

component c . sin a. With the latter velocity the body

ascends during the same interval of time / which it

would take to acquire this velocity in falling vertically

downwards. Therefore, e . sin a =gt. When it has

reached its greatest height the vertical component of

its initial velocity has vanished, and from the point S
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The range
of projec-
tion.

Fig. ioo.

onward (Fig. ioo) it continues its motion as a horizon-

tal projection. If we examine any two epochs equally

distant in time, before and after the transit through S,

we shall see that the body at

these two epochs is equally

distant from the perpendicu-

lar through S and situated the

same distance below the hori-

zontal line through S. The

curve is therefore symmet-

rical with respect to the vertical line through S. It

is a parabola with vertical axis and the parameter

(c cos a) 2
/g.

To find the so-called range of projection, we have

simply to consider the horizontal motion during the

time of the rising and falling of the body. For the ascent

this time is, according to the equations above given,

t=c s'ma/g, and the same for the descent. With the

horizontal velocity c . cos a, therefore, the distance is

traversed

^ c sin a
w = c cos a ,

sin of cos a =

The range of projection is greatest accordingly

when a= 45 , and equally great for any two angles

a = 45 db/S .

The mutual 1 9. The recognition of the mutual independence of

denc^of the forces, or motion-determinative circumstances oc-

curring in nature, which wasforces.

B

D

reached and found expression

in the investigations relating to

projection, is important. A body
Fig. 101. may move (Fig. 101) in the di-

rection AB, while the space in which this motion oc-

curs is displaced in the direction AC. The body then



THE PRINCIPLES OF DYNAMICS. 155

goes from A to D. Now, this also happens if the two

circumstances that simultaneously determine the mo-

tions AB and AC, have no influence on one another.

It is easy to see that we may compound by the paral-

lelogram not only displacements that have taken place

but also velocities and accelerations that simultane-

ously take place. (See Appendix, X., p. 525.)

THE ACHIEVEMENTS OF HUYGENS.

i. The next in succession of the great mechanical in- Huygens's

tt i i. 4. u high rank
quirers is Huygens, who in every respect must be as an in-

ranked as Galileo's peer. If, perhaps, his philosophical
quiren

endowments were less splendid than those of Galileo,

this deficiency was compensated for by the superiority

of his geometrical powers. Huygens not only continued

the researches which Galileo had begun, but he also

solved the first problems in the dynamics of several

masses, whereas Galileo had throughout restricted him-

self to the dynamics of a single body.

The plenitude of Huygens's achievements is best Enumera-
• ... . i-i 1 • tionofHuy-

seen in his HorologiumOscillatorium, which appeared 111 gens's
ctchicvG""

1673. The most important subjects there treated of forments.

the first time, are : the theory of the centre of oscilla-

tion, the invention and construction of the pendulum-

clock, the invention of the escapement, the determina-

tion of the acceleration of gravity, g, by pendulum-

observations, a proposition regarding the employment

of the length of the seconds pendulum as the unit of

length, the theorems respecting centrifugal force, the

mechanical and geometrical properties of cycloids, the

doctrine of evolutes, and the theory of the circle of

curvature.
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2. With respect to the form of presentation of his

work, it is to be remarked that Huygens shares with

Galileo, in all its perfection, the latter's exalted and

inimitable candor. He is frank without reserve in the

presentment of the methods that led him to his dis-
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coveries, and thus always

conducts his reader into the

full comprehension of his

performances. Nor had he

cause to conceal these

methods. If, a thousand

years from now, it shall be

found that he was a man, it

will likewise be seen what

manner of man he was.

In our discussion of the

achievements of Huygens,

however, we shall have to

proceed in a somewhat dif-

ferent manner from that

which we pursued in the

case of Galileo. Galileo's

views, in their classical sim-

plicity, could be given in an

almost unmodified form.

With Huygens this is not

possible. The latter deals

with more complicated

problems; his mathematical

methods and notations be-

come inadequate and cum-
brous. For reasons of brev-

ity, therefore, we shall re-

produce all the conceptions

of which we treat, in mod-
ern form, retaining, how-
ever, Huygens's essential

and characteristic ideas. Huygens's Pendulum Clock.
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Centrifugal 3. We begin with the investigations concerning

peta?force. centrifugal force. When once we have recognised with

Galileo that force determines acceleration, we are im-

pelled, unavoidably, to ascribe every change of velocity

and consequently also every change in the direction of

a motion (since the direction is determined by three

velocity-components perpendicular to one another) to

a force. If, therefore, any body attached to a string,

say a stone, is swung uniformly round in a circle, the

curvilinear motion which it performs is intelligible only

on the supposition of a constant force that deflects the

body from the rectilinear path. The tension of the

string is this force ; by it the body is constantly deflected

from the rectilinear path and made to move towards

the centre of the circle. This tension, accordingly, rep-

resents a centripetal force. On the other hand, the axis

also, or the fixed centre, is acted on by the tension of

the string, and in this aspect the tension of the string

appears as a centrifugal force.

Fig. 102. Fig. 103.

Let us suppose that we have a body to which, a ve-

locity has been imparted and which is maintained in

uniform motion in a circle by an acceleration constantly

directed towards the centre. The conditions on which

this acceleration depends, it is our purpose to investi-

gate. We imagine (Fig. 102) two equal circles uni-
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formly travelled round by two bodies ; the velocities in Uniform
. ill • motion in

the circles I and II bear to each other the proportion equal
circles

1:2. If in the two circles we consider any same arc-

element corresponding to some very small angle a, then

the corresponding element s of the distance that the

bodies in consequence of the centripetal acceleration

have departed from the rectilinear path (the tangent),

will also be the same. If we call cp
x
and cp

2
the re-

spective accelerations, and r and r/2 the time-elements

for the angle a, we find by Galileo's law

2s 2s
cp

±
= ^-2

-, cp
2
= 4

^ 2
, that is to say cp

2
= 4^.

Therefore, by generalisation, in equal circles the

centripetal acceleration is proportional to the square of

the velocity of the motion.

Let us now consider the motion in the circles I and Uniform

TT . -..p... ., motion in

II (Fig. 103), the radii of which are to each other as unequal
circles.

i : 2, and let us take for the ratio of the velocities of

the motions also 1:2, so that like arc-elements are

travelled through in equal times. cp
1 , g? 2 , s, 2s denote

the accelerations and the elements of the distance trav-

ersed ; r is the element of the time, equal for both

cases. Then

2s 4s .

9i = Tp 92 = r 2>
that is to say ^2 = 2?V

If now we reduce the velocity of the motion in II

one-half, so that the velocities in I and II become
equal, cp

2
will thereby be reduced one-fourth, that is

to say to cp
1 /2. Generalising, we get this rule: when

the velocity of the circular motion is the same, the cen-

tripetal acceleration is inversely proportional to the

radius of the circle described.

4. The early investigators, owing to their following



i6o THE SCIENCE OE MECHANICS.

Deduction the conceptions of the ancients, generally obtained their
of the gen- . . . , , r f ,

•

eraiiawof propositions in the cumbersome iorm ot proportions.

motion^ We shall pursue a different method. On a movable

object having the velocity v let a force act during the

element of time r which imparts to the object perpen-

dicularly to the direction of its motion the acceleration

cp. The new velocity-component thus becomes cpr,

and its composition with the first velocity produces a

new direction of the motion, making the angle a with

the original direction. From this results, by conceiving

the motion to take place in a circle of radius r, and on

account of the smallness of the angular element putting

Fig. 104. Fig. 105.

tan a = a, the following, as the complete expression

for the centripetal acceleration of a uniform motion in

a circle,

cpr = tan a a
vr

or cp :

7,2

v r

The para- The idea of uniform motion in a circle conditioned
doxical .... \- ii_-\

character by a constant centripetal acceleration is a little para-

probiem. doxical. The paradox lies in the assumption of a con-

stant acceleration towards the centre without actual

approach thereto and without increase of velocity. This

is lessened when we reflect that without this centripetal

acceleration the body would be continually moving

away from the centre ; that the direction of the accel-
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eration is constantly changing ; and that a change of

velocity (as will appear in the discussion of the prin-

ciple of vis viva) is connected with an approach of the

bodies that accelerate each other, which does not take

place here. The more complex case of elliptical cen-

tral motion is elucidative in this direction. (See p. 527.)

5. The expression for the centripetal or centrifugal a different
expression

acceleration, cp = v 2 /r, can easily be put in a somewhat of the law.

different form. If J1

denote the periodic time of the

circular motion, the time occupied in describing the

circumference, then vT= 2 r n, and consequently q) =
\rn 2/T2

, in which form we shall employ the expres-

sion later on. If several bodies moving in circles have

the same periodic times, the respective centripetal ac-

celerations by which they are held in their paths, as is

apparent from the last expression, are proportional to

the radii.

6. We shall take it for granted that the reader is Some phe-
.... -ii 1 i -ii i

nomena
familiar with the phenomena that illustrate the con- which the

r
^aw ex"

siderations here presented : as the rupture of strings of plains,

insufficient strength on which bodies are whirled about,

the flattening of soft rotating spheres, and so on. Huy-

gens was able, by the aid of his conception, to explain

at once whole series of phenomena. When a pendulum-

clock, for example, which had been taken from Paris

to Cayenne by Richer (1 671-1673), showed a retarda-

tion of its motion, Huygens deduced the apparent

diminution of the acceleration of gravity g thus estab-

lished, from the greater centrifugal acceleration of the

rotating earth at the equator ; an explanation that at

once rendered the observation intelligible.

An experiment instituted by Huygens may here be

noticed, on account of its historical interest. When
Newton brought out his theory of universal gravitation,
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An interest- Huygens belonged to the great number of those who

men
e
t

X
of
ed

" were unable to reconcile themselves to the idea of action
Huygens. ^ ^ distance# jje was of the opinion that gravitation

could be explained by a vortical medium. If we enclose

in a vessel filled with a liquid a number of lighter bod-

ies, say wooden balls in water, and set the vessel ro-

tating about its axis, the balls will at once rapidly move

towards the axis. If for instance (Fig. 106), we place

the glass cylinders RR containing the wooden balls KK
by means of a pivot Z on a rotatory apparatus, and ro-

tate the latter about its ver-
11

J^ J 3^W tical axis, the balls will im-

mediately run up the cyl-

inders in the direction away
Lj-J from the axis. But if the

a\ tubes be filled with water,

Fig. 106. each rotation will force the

balls floating at the extremities EE towards the axis.

The phenomenon is easily explicable by analogy with

the principle of Archimedes. The wooden balls receive

a centripetal impulsion, comparable to buoyancy,

which is equal and opposite to the centrifugal force

acting on the displaced liquid. (See p. 528.)

oscillatory 7. Before we proceed to Huygens's investigations
motion. ^ ^e cen tre of oscillation, we shall present to the

reader a few considerations concerning pendulous and

oscillatory motion generally, which will make up in ob-

viousness for what they lack in rigor.

Many of the properties of pendulum motion were

known to Galileo. That he had formed the concep-

tion which we shall now give, or that at least he was

on the verge of so doing, may be inferred from many

scattered allusions to the subject in his Dialogues. The

bob of a simple pendulum of length / moves in a circle
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(Fig. 107") of radius /. If we give the pendulum a very Galileo's
y

. . ... . investiga-

small excursion, it will travel in its oscillations over ationofthe
. law of the

very small arc which coincides approximately with the pendulum.

chord belonging to it. But this ^-—177-

—

s^^

chord is described by a falling /
j

\.

particle, moving on it as on an /
|

\

inclined plane (see Sect. 1 of this /

Chapter, § 7), in the same time I

as the vertical diameter BD= \

2/. If the time of descent be \ /

called /, we shall have 2/= 7**

k/ 2
, that is t=2\/T/7. But2A

.

' Fig. 107.

since the continued movement

from B up the line BC occupies an equal interval of

time, we have to put for the time T of an oscillation

from Cto C, T= \VTj~g- It will be seen that even from

so crude a conception as this the correct form of the

pendulum-laws is obtainable. The exact expression

for the time of very small oscillations is, as we know,

Again, the motion of a pendulum bob may be viewed pendulum
r , r • 1 j motion

as a motion of descent on a succession ot inclined viewed as a

planes. If the string of the pendulum makes the angle down in-

a with the perpendicular, the pendulum bob receives planes,

in the direction of the position of equilibrium the accel-

eration g. sin a. When a is small, g. a is the expres-

sion of this acceleration ; in other words, the accelera-

tion is always proportional and oppositely directed to

the excursion. When the excursions are small the

curvature of the path may be neglected.

8. From these preliminaries, we may proceed to

the study of oscillatory motion in a simpler manner. A
body is free to move on a straight line OA (Fig. 108),

and constantly receives in the direction towards the
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DC

a simpler point an acceleration proportional to its distance from
and modern ~ T , T .,.

,
. . -, •

view of os- O. We will represent these accelerations by ordmates
cillatory . . .

1
. ,

motion. erected at the positions considered. Ordmates upwards

denote accelerations towards the left ; ordinates down-

wards represent accel-

erations towards the

right. The body, left

to itself at A, will

move towards O with

varied acceleration,

~S
7
l4>

pass through O to A
x ,

where OA
1
= OA,

come back to O, and

so again continue its

FJ g- Io8 - motion. It is in the

The period first place easily demonstrable that the period of os-
Of OSCilla- .-.>. si • r 1 •

1 1 a x-» a n •

cillation (the time of the motion through AOA^j is in-

dependent of the amplitude of the oscillation (the dis-

tance OA). To show this, let us imagine in I and

II the same oscillation performed, with single and

double amplitudes of oscillation. As the acceleration

varies from point to point, we must divide OA and

O'A' — 2OA into a very large equal number of ele-

ments. Each element A'B' of O'A' is then twice as

large as the corresponding element AB of OA. The

initial accelerations cp and cp stand in the relation

cp = 2cp. Accordingly, the elements AB and A'B' —
2AB are described with their respective accelerations

cp and 2cp m the same time r. The final velocities v

and v in I and II, for the first element, will be v= cpr

and v' — 2(pr, that is v — 2 v. The accelerations and

the initial velocities at B and B' are therefore again as

1 : 2. Accordingly, the corresponding elements that

next succeed will be described in the same time. And

tion inde-
pendent of
the ampli-
tude.
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^H of the ac-

celeration.

of every succeeding pair of elements the same asser-

tion also holds true. Therefore, generalising, it will

be readily perceived that the period of oscillation is

independent of its amplitude or breadth.

Next, let us conceive two oscillatory motions, I and The time of

II, that have equal excursions (Fig. 109); but in II let ^eiy
n

a fourfold acceleration correspond to the same distance ^°
r̂ oot

from O. We divide the amplitudes of
j

the oscillations AG and O'A' = OA
into a very large equal number of

parts. These parts are then equal in

I and II. The initial accelerations at

A and A' are cp and 4 cp ;
the ele-

ments of the distance described are

AB = A'B* = s ; and the times are

respectively rand r'. We obtain, then,

r = Visjqh *' = V* V4 9 = r/2 -

The element A'B' is accordingly trav-

elled through in one-half the time

the element AB is. The final velocities

B and B' are found by the equations

v = 4 qKT/2 ) = 2 v - Since, therefore, the initial velo-

cities at B and B' are to one another as 1:2, and the

accelerations are again as 1:4, the element of II suc-

ceeding the first will again be traversed in half the

time of the corresponding one in I. Generalising, we

get : For equal excursions the time of oscillation is in-

versely proportional to the square root of the accelera-

tions.

9. The considerations last presented may be put in

a very much abbreviated and very obvious form by a

method of conception first employed by Newton. New-

ton calls those material systems similar that have geo-

metrically similar configurations and whose homolo-
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The princi-gous masses bear to one another the same ratio. He
pleof simil-
itude. says further that systems of this kind execute similar

movements when the homologous points describe simi-

lar paths in proportional times. Conformably to the

geometrical terminology of the present day we should

not be permitted to call mechanical structures of this

kind (of five dimensions) similar unless their homolo-

gous linear dimensions as well as the times and the

masses bore to one another the same ratio. The struc-

tures might more appropriately be termed affined to

one another.

We shall retain, however, the name phoronomically

similar structures, and in the consideration that is to

follow leave entirely out of account the masses.

In two such similar motions, then, let

the homologous paths be s and as,

the homologous times be / and /?/; whence
the homologous velo-

S DC S
cities are v = — and yv= y —

,

the homologous accel- . '
rt

2s
, a 2s

erations q>== - and £m= —— —

.

Thededuc- Now all oscillations which a body performs under

laws of os- the conditions above set forth with any two different

this

a
method amplitudes i and a, will be readily recognised as sim-

ilar motions. Noting that the ratio of the homologous
accelerations in this case is €= a, we have a = a/(3 2

.

Wherefore the ratio of the homologous times, that is

to say of the times of oscillation, is /3= d= i. We ob-

tain thus the law, that the period of oscillation is inde-

pendent of the amplitude.

If in two oscillatory motions we put for the ratio

between the amplitudes i : a, and for the ratio between

the accelerations i : a jd, we shall obtain for this case
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e— a/*= a/ft
2

, and therefore ft= i/=fc y/ pi ; where-

with the second law of oscillating motion is obtained.

Two uniform circular motions are always phoronom-

ically similar. Let the ratio of their radii be 1 : a and

the ratio of their velocities 1 : y. The ratio of their

accelerations is then €= a/ft
2

, and since y=a/ft,
also 8z= y 2 /a; whence the theorems relative to cen-

tripetal acceleration are obtained.

It is a pity that investigations of this kind respect-

ing mechanical and phoronomical affinity are not more

extensively cultivated, since they promise the most

beautiful and most elucidative extensions of insight

imaginable.

10. Between uniform motion in a circle and oscil- The con-
nection be-

latory motion of the kind just discussed an important tweenoscii-
J

.
latory mo-

relation exists which we shall now consider. We as- tion of this
kind and

sume a system of rectangular co- y uniform
J

m .
motion in a

ordinates, having its origin at the /^ ~^\ circle,

centre, O, of the circle of Fig. no,

about the circumference of which

we conceive a body to move uni-

formly. The centripetal accelera-

tion cp which conditions this mo- Tk
tion, we resolve in the directions Fi s- IIQ -

of X and F; and observe that the X-components of the

motion are affected only by the X-components of the

acceleration. We may regard both the motions and

both the accelerations as independent of each other.

Now, the two components of the motion are os- The iden-
tity of the

dilatory motions to and fro about O. To the excur- two.

sion x the acceleration-component cp (x/r) or (cp/r) x

in the direction O, corresponds. The acceleration is

proportional, therefore, to the excursion. And accord-

ingly the motion is of the kind just investigated. The
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time T of a complete to and fro movement is also the

periodic time of the circular motion. With respect to

the latter, however, we know that cp= \r n 2 /

T

2
, or,

what is the same, that T= inVr/cp. Now cpjr is

the acceleration for x= 1, the acceleration that corre-

sponds to unit of excursion, which we shall briefly

designate by /. For the oscillatory motion we may

put, therefore, T= 2 7t\/i/f. For a single movement

to, or a single movement fro,—the common method of

reckoning the time of oscillation,—we get, then, T=
7t l/i77

Theappii- ii- Now this result is directly applicable to pen-

the 5Tst°re- dulum vibrations of very small excursions, where, ne-

duiVmv
P
i-

en
"glecting the curvature of the path, it is possible to ad-

brations.
kere to the conception developed. For the angle of

elongation a we obtain as the distance of the pendulum

bob from the position of equilibrium, la; and as the

corresponding acceleration, ga; whence

/=*"=« ntT=nSL.
J la I \ g

This formula tells us, that the time of vibration is

directly proportional to the square root of the length

of the pendulum, and inversely proportional to the

square root of the acceleration of gravity. A pendulum

that is four times as long as the seconds pendulum,

therefore, will perform its oscillation in two seconds.

A seconds pendulum removed a distance equal to the

earth's radius from the surface of the earth, and sub

jected therefore to the acceleration g/\, will likewise

perform its oscillation in two seconds.

12. The dependence of the time of oscillation on

the length of the pendulum is very easily verifiable by

experiment. If (Fig. in) the pendulums a, b, c,



THE PRINCIPLES OE DYNAMICS. 169

which to maintain the plane of oscillation invariable Experimen-
tal verifica-

are suspended by double threads, have the lengths 1, tionofthe
. -11 • -i *aws °f tne

4, 9, then a will execute two oscillations to one oscil- pendulum.

lation of /?, and three to one of c.

Fig. in.

The verification of the dependence of the time of

oscillation on the acceleration of gravity g is some-

what more difficult ; since the latter cannot be arbi-

trarily altered. But the demonstration can be effected

by allowing one component only of g to act on the

pendulum. If we imagine the axis of oscillation of
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Experimen- the pendulum AA fixed in the vertically placed plane

tionofthe of the paper, EE will be the intersection of the plane

pendulum. /4L £ °* oscillation with the plane of the paper

/|\/2 and likewise the position .of equilibrium

of the pendulum. The axis makes with

the horizontal plane, and the plane of os-

cillation makes with the vertical plane, the

angle [3; wherefore the acceleration g. cos/3

is the acceleration which acts in this plane.

If the pendulum receive in the plane of its oscillation

the small elongation a, the corresponding acceleration

Fig. 112.

Fig. 113.

will be (g cos /3) a ; whence the time of oscillation is

T=?t i//Jgcos~jL
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We see from this result, that as /3 is increased the

acceleration g cos fi diminishes, and consequently the

time of oscillation increases. The experiment may be

easily made with the apparatus represented in Fig. 113.

The frame RR is free to turn about a hinge at C; it can

be inclined and placed on its side. The angle of in-

clination is fixed by a graduated arc G held by a set-

screw. Every increase of /3 increases the time of oscil-

lation. If the plane of oscillation be made horizontal,

in which position R rests on the foot F, the time of

oscillation becomes infinitely great. The pendulum

in this case no longer returns to any definite position

but describes several complete revolutions in the same

direction until its entire velocity has been destroyed

by friction.

13. If the movement of the pendulum do not take The conical
^

, pendulum.
place in a plane, but be performed in space, the thread

of the pendulum will describe the surface

of a cone. The motion of the conical pen-

dulum was also investigated byHuygens.

We shall examine a simple case of this

motion. We imagine (Fig. 114) a pen-

dulum of length / removed from the ver-

tical by the angle a, a velocity v imparted

to the bob of the pendulum at right
Flg " II4 *

angles to the plane of elongation, and the pendulum re-

leased. The bob of the pendulum will move in a hori-

zontal circle if the centrifugal acceleration cp developed

exactly equilibrates the acceleration of gravity g; that

is, if the resultant acceleration falls in the direction of

the pendulum thread. But in that case <p/g= tan a.

If T stands for the time taken to describe one revolu-

tion, the periodic time, then cp = 4/' 7t 2 /T2 or T=
2 7t V'r

1
'cp. Introducing, now, in the place of r] cp the
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value / sin ajg tan a = I cos a/g, we get for the periodic

time of the pendulum, T= 2 zr ]/ / cos a/g. For the ve-

locity v of the revolution we find v = V'rcp
9
and since

<£>= £• tan** it follows that v = '[/g~l sin a tan a. For

very small elongations of the conical pendulum we may
put T= 2 7t V'l/g, which coincides with the regular

formula for the pendulum, when we reflect that a single

revolution of the conical pendulum corresponds to two

vibrations of the common pendulum.

The deter- 1 4. Huygens was the first to undertake the exact
mination of - . . . .

the accei- determination of the acceleration of gravity g by means
gravity by of pendulum observations. From the formula T=
ium

P
7t Vl/g for a simple pendulum with small bob we ob-

tain directly g= n 2 l/T2
. For latitude 45 we obtain

as the value of g, in metres and seconds, 9 . 806. For
provisional mental calculations it is sufficient to re-

member that the acceleration of gravity amounts in

round numbers to 10 metres a second.

a remark 15. Every thinking beginner puts to himself the
on the form- ., ... ni . . -n •

uia express- question how it is that the duration of an oscillation,

' that is a time, can be found by dividing a number that

is the measure of a length by a number that is the

measure of an acceleration and extracting the square

root of the quotient. But the fact is here to be borne in

mind that gz= 2 s/t 2
, that is a length divided by the

square of a time. In reality therefore the formula we
have is T= n\/(J/2s)t 2

. And since I/2 s is the ratio

of two lengths, and therefore a number, what we have

under the radical sign is consequently the square of a

time. It stands to reason that we shall find Tin sec-

onds only when, in determining g, we also take the sec-

ond as unit of time.

In the formula g= n 2 l/T2 we see directly that g is
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a length divided by the square of a time, according to

the nature of an acceleration.

16. The most important achievement of Huygens The prob-
r

.
lem oi tne

is his solution of the problem to determine the centre centre of
x

m
oscillation.

of oscillation. So long as we have to deal with the dy-

namics of a single body, the Galilean principles amply

suffice. But in the problem just mentioned we have to

determine the motion of several bodies that mutually

influence each other. This cannot be done without

resorting to a new principle. Such a one Huygens

actually discovered.

We know that lone: pendulums perform their oscil- statement
x x

of the prob-

ations more slowly than short ones. Let us imagine a lem.

heavy body, free to rotate about an axis, the centre of

gravity of which lies outside of the axis ; such

a body will represent a compound pendulum.

Every material particle of a pendulum of this

kind would, if it were situated alone at the

same distance from the axis, have its own pe-

riod of oscillation. But owing to the connec- Fig. 115.

tions of the parts the whole body can vibrate with only

a single, determinate period of oscillation. If we pic-

ture to ourselves several pendulums of unequal lengths,

the shorter ones will swing quicker, the longer ones

slower. If all be joined together so as to form a single

pendulum, it is to be presumed that the longer ones

will be accelerated, the shorter ones retarded, and that

a sort of mean time of oscillation will result. There

must exist therefore a simple pendulum, intermediate

in length between the shortest and the longest, that

has the same time of oscillation as the compound pen-

dulum. If we lay off the length of this pendulum on

the compound pendulum, we shall find a point that pre-

serves the same period of oscillation in its connection
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with the other points as it would have if detached and

left to itself. This point is the centre of oscillation.

Mersenne was the first to propound the problem of

determining the centre of oscillation. The solution of

Descartes, who attempted it, was, however, precipi-

tate and insufficient.

Huygens's 17. Huygens was the first who gave a general solu-

tion. Besides Huygens nearly all the great inquirers

of that time employed themselves on the problem, and

we may say that the most important principles of mod-

ern mechanics were developed in connection with it.

The new idea from which Huygens set out, and

which is more important by far than the whole prob-

lem, is this. In whatsoever manner the material par-

ticles of a pendulum may by mutual interaction modify

each other's motions, in every case the velocities ac-

quired in the descent of the pendulum can be such only

that by virtue of them the centre of gravity of the par-

ticles, whether still in connection or with their connec-

tions dissolved, is able to rise just as high as the point

The new from which it fell. Huygens found himself compelled,

wh?c
C
h
P
Huy- by the doubts of his contemporaries as to the correct-

duced
ntr°"

ness of this principle, to remark, that the only assump-

tion implied in the principle is, that heavy bodies of

themselves do not move upwards. If it were possible

for the centre of gravity of a connected system of falling

material particles to rise higher after the dissolution

of its connections than the point from which it had

fallen, then by repeating the process heavy bodies

could, by virtue of their own weights, be made to rise

to any height we wished. If after the dissolution of

the connections the centre of gravity should rise to a

height less than that from which it had fallen, we

should only have to reverse the motion to produce the
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same result. What Huygens asserted, therefore, no

one had ever really doubted ; on the contrary, every

one had instinctively perceived it. Huygens, however,

gave this instinctive perception an abstract, conceptual

form. He does not omit, moreover, to point out, on the

ground of this view, the fruitlessness of endeavors to

establish a perpetual motion. The principle just devel-

oped will be recognised as a generalisation of one of Ga-

lileo's ideas.

18. Let us now see what the principle accomplishes Huygens's
principle

in the determination of the centre of oscillation. Let applied.

OA (Fig. 116), for simplicity's sake,

be a linear pendulum, made up of a

large number of masses indicated in

the diagram by points. Set free at

OA, it will swing through B to OA',

where AB = BA'. Its centre of

gravity *S will ascend just as high

on the second side as it fell on the
lg ' XI '

first. From this, so far, nothing would follow. But

also, if we should suddenly, at the position OB, re-

lease the individual masses from their connections, the

masses could, by virtue of the velocities impressed on

them by their connections, only attain the same height

with respect to centre of gravity. If we arrest the free

outward-swinging masses at the greatest heights they

severally attain, the shorter pendulums will be found

below the line OA' , the longer ones will have passed

beyond it, but the centre of gravity of the system will

be found on OA' in its former position.

Now let us note that the enforced velocities are

proportional to the distances from the axis ; therefore,

one being given, all are determined, and the height of

ascent of the centre of gravity given. Conversely,
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therefore, the velocity of any material particle also is

determined by the known height of the centre of grav-

ity. But if we know in a pendulum the velocity cor-

responding to a given distance of descent, we know its

whole motion.

Thede- 19. Premising these remarks, we proceed to the

lution of the problem itself. On a compound linear pendulum (Fig.
problem.

Fig. 117.

117) we cut off, measuring from the axis, the

portion = i. If the pendulum move from its

position of greatest excursion to the position

of equilibrium, the point at the distance = i

from the axis will fall through the height k.

The masses ///, ///', in" ... at the distances

r, ;-', /-"
. . . will fall in this case the dis-

tances rk, r k, r" k . . . , and the distance of

the descent of the centre of gravity will be :

m rk -j- 111 rk
-J-

m"r"k + • • • ,2mr
in -\- 111 -f-

///" -j- - . . . 2 111

Let the point at the distance i from the axis ac-

quire, on passing through the position of equilibrium,

the velocity, as yet unascertained, v. The height of

its ascent, after the dissolution of its connections, will

be v 2 /2g. The corresponding heights of ascent of

the other material particles will then be (rv) 2 /2g,

(r' v) 2 hg, (r" v) 2 /2g . . . . The height of ascent of the

centre of gravity of the liberated masses will be

(rvy
.

,(>V)

^ -f- ;;/ 1- m .,
(r"vy + ....

v2 2 m r2

711 -f 111 -f ;;/" + • • . ^g

By Huygens's fundamental principle, then,

_ 2mr
2, m

2 2mr 2

c 2 m
. . . (a).
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From this a relation is deducible between the distance of

descent k and the velocity v. Since, however, all pen-

dulum motions of the same excursion are phoronomi-

cally similar, the motion here under consideration is,

in this result, completely determined.

To find the length of the simple pendulum that has The length
x of the sim-

the same period of oscillation as the compound pen- pie isoch-
r

. ronous

dulum considered, be it noted that the same relation pendulum,

must obtain between the distance of its descent and its

velocity, as in the case of its unimpeded fall. If y is

the length of this pendulum, ky is the distance of its

descent, and vy its velocity ; wherefore

-----= ky, or

y-t= k W-

'Multiplying equation (a) by equation (p) we obtain

2 m r 2

y= _.

Employing the principle of phoronomic similitude, solution of

we may also proceed in this way. From (a) we get lembythe
principle of

„ similitude.

=i/M^2mr 2
'

A simple pendulum of length 1, under corresponding

circumstances, has the velocity

v
1
= \/2g&.

Calling the time of oscillation of the compound pendu-

lum T, that of the simple pendulum of length 1 T
1
=

-rrVi/g, we obtain, adhering to 1 the supposition of

equal excursions,

T
~z=r= — : wherefore T— /«. A/—

^

.

7\ .v \ g2mr
=Wl
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Huygens's 20. We see without difficulty in the Huygenian

EiSf principle the recognition of work as the condition de-

pnctie of Sermmative of'velocity, or, more exactly, the condition

determinative of the so-called vis viva. By the vis

viva or living force of a system of masses m, m„

mn . . . ., affected with the velocities v, vn v„ . . . ., we

understand the sum *

7?iv 2 m,v, 2
,

m,, v tt
2

L

The fundamental principle of Huygens is identical with

the principle of vis viva. The additions of later in-

quirers were made not so much to the idea as to the

form of its expression.

If we picture to ourselves generally any system of

weights/, p„pn . . • ., which fall connected or uncon-

nected through the heights h, h„ h„ , and attain

thereby the velocities v, v„ v„ . . . ., then, by the Huy-

genian conception, a relation of equality exists between

the distance of descent and the distance of ascent of the

centre of gravity of the system, and, consequently, the

equation holds

7; 2 7/2 7/'

2

or 2p/i = --2--n

p +£' _(_/' 4. . . . J+~P' + />"+••

l^pv 2

g

If we have reached the concept of " mass," which

Huygens did not yet possess in his investigations, we

may substitute iorp/g the mass m and thus obtain the

form 2p/i= %2mv 2
, which is very easily generalised

for non-constant forces.

* This is not the usual definition of English writers, who follow the older

authorities in making the vis viva twice this quantity.— Trans.
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21. With the aid of the principle of living forces^^1

of

we can determine the duration of the infinitely small determin-
ing the pe-

oscillations of any pendulum whatso- ^~-\ riodofpen-
J r

/ ^ dulum os-

ever. We let fall from the centre of (

~ \ dilations,

gravity s (Fig. 1 18) a perpendicular on

the axis; the length of the perpendic-

ular is, say, a. We lay off on this,

measuring from the axis, the length

= 1. Let the distance of descent of

the point in question to the position of Flg> II8 '

equilibrium be k, and v the velocity acquired. Since

the work done in the descent is determined by the

motion of the centre of gravity, we have

work done in descent = vis viva :

v 2 ^akgM=~^- Jzmr 2
.

M here we call the total mass of the pendulum and

anticipate the expression vis viva. By an inference

similar to that in the preceding case, we obtain T=
nVYnJr^JagM.

22. We see that the duration of infinitely small The two
J determina-

oscillations of any pendulum is determined by two fac- tive factors,

tors—by the value of the expression 2mr 2
, which

Euler called the moment of inertia and which Huygens

had employed without any particular designation, and

by the value of agM. The latter expression, which we

shall briefly term the statical moment, is the product

a P of the weight of the pendulum into the distance of

its centre of gravity from the axis. If these two values

be given, the length of the simple pendulum of the

same period of oscillation (the isochronous pendulum)

and the position of the centre of oscillation are deter-

mined.
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Fig. 119.

from

Huygens's For the determination of the lengths of the pendu-
geometrical
methods of lums referred to, Huygens, in the lack of the analytical
solution.

.

methods later discovered, employed a very ingenious

geometrical procedure, which

we shall illustrate by one or

two examples. Let the prob-

lem be to determine the time

of oscillation of a homogene-

ous, material, and heavy rec-

tangle ABCD, which swings

on the axis AB (Fig. 119).

Dividing the rectangle into

minute elements of area/,/,,

/,,.... having the distances

the axis, the expression for the

length of the isochronous simple pendulum, or the dis-

tance of the centre of oscillation from the axis, is given

by the equation

fr+7,r,+7,,r„ + ....

Let us erect on ABCD at C and D the perpendiculars

CE = DE= AC= BD and picture to ourselves a

homogeneous wedge ABCDEF. Now find the distance

of the centre of gravity of this wedge from the plane

through AB parallel to CDEF. We have to consider,

in so doing, the tiny columns /r,/ rn fn rn . . . . and

their distances r, rn rn . . . . from the plane referred

to. Thus proceeding, we obtain for the required dis-

tance of the centre of gravity the expression

A- r +f, r, ._r, ±fnjn - ',, + ....

fr~+7,r,+f,,r~;+....

that is, the same expression as before. The centre of

oscillation of the rectangle and the centre of gravity of
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the wedge are consequently at the same distance from

the axis, \AC.

Following: out this idea, we readily perceive the Analogous
.

applica-

correctness of the following assertions. For a homo- tions of the
preceding

geneous rectangle of height h swinging about one of methods,

its sides, the distance of the centre of gravity from the

axis is J1/2, the distance of the centre of oscillation \h.

For a homogeneous triangle of height /i, the axis of

which passes through the vertex parallel to the base,

the distance of the centre of gravity from the axis is

§/*, the distance of the centre of oscillation \h. Call-

ing the moments of inertia of the rectangle and of the

triangle A 19 z/
2 , and their respective masses M19 M2 ,

we get

*h-Al
3 h 4 "

2^
2/1 ,r

Consequently A
^

h?M,
A,

/i
2M

3 '
2 2

By this pretty geometrical conception many prob-

lems can be solved that are to-day treated—more con-

veniently it is true—by routine forms.

Fig. 120. Fig. 121.

23. We shall now discuss a proposition relating to

moments of inertia, that Huygens made use of in a

somewhat different form. Let O (Fig. 121) be the

centre of gravity of any given body. Make this the
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The reia- origin of a system of rectangular coordinates, and sup-
tion of mo- . . . .

ments of in- pose the moment of inertia with reference to the Z-axis
GrtiEi re-

fen-ed to determined. If in is the element of mass and r its dis-
parallel . .

axes. tance from the Z-axis, then this moment of inertia is

A = 2mr 2
. We now displace the axis of rotation

parallel to itself to O', the distance a in the X-direction.

The distance r is transformed, by this displacement,

into the new distance p, and the new moment of

inertia is

= 2m p 2 = 2m \_{x — a) 2 +J' 2
] = 2m{x 2 + y 2

)
—

2a2mx -\- a 22 m, or, since 2m(x 2 -\-y 2
) = 2m

r

2 = A,

calling the total mass M= 2 m, and remembering the

property of the centre of gravity 2m x = 0,

From the moment of inertia for one axis through the

centre of gravity, therefore, that for any other axis

parallel to the first is easily derivable.

Anappii- 24. An additional observation presents itself here.
cation of ....
thispropo- The distance of the centre of oscillation is given by
sition.

the equation /= A + a 2M/aM, where A, M, and a

have their previous significance. The quantities A and

M are invariable for any one given body. So long

therefore as a retains the same value, / will also remain

invariable. For all parallel axes situated at the same

distance from the centre of gravity, the same body as

pendulum has the same period of oscillation. . If we

put A/M— k, then

a

Now since / denotes the distance of the centre of

oscillation, and a the distance of the centre of gravity

from the axis, therefore the centre of oscillation is

always farther away from the axis than the centre of
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gravity by the distance u/a. Therefore u/a is the dis-

tance of the centre of oscillation from the centre of

gravity. If through the centre of oscillation we place

a second axis parallel to the original axis, a passes

thereby into u/a, and we obtain the new pendulum

length

Jt
k K K

k a a

a

The time of oscillation remains the same therefore

for the second parallel axis through the centre of oscil-

lation, and consequently the same also for every par-

allel axis that is at the same distance u/a from the

centre of gravity as the centre of oscillation.

The totality of all parallel axes corresponding to

the same period of oscillation and having the distances a

and u/a from the centre of gravity, is consequently re-

alised in two coaxial cylinders. Each generating line

is interchangeable as axis with every other generating

line without affecting the period of oscillation.

25. To obtain a clear view of the relations subsist- The axial
cylinders.

ing between the two axial cylinders, as we shall briefly

call them, let us institute the following considerations.

We put A = k 2M, and then

k 2

1= -|- a.
a

If we seek the a that corresponds to a given /, and

therefore to a given time of oscillation, we obtain

/

w:- JL> 2
.

Generally therefore to one value of / there correspond

two values of a. Only where v l2 /\ — k 2 = 0, that is

in cases in which /== ik. do both values coincide in
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If we designate the two values of a that correspond

to every /, by a and {3, then

, k 2 + a 2 k 2 + /3
2

a p
fi(k

2 + a 2
) = a(k 2 + fi

2
),

JP(j3—a) = a/3(P — a),

k 2 = a . p.

The deter- If, therefore, in any pendulous body we know two par-

the" pre?e°<- allel axes that have the same time of oscillation and

b"
g
ageo°-

r
''

different distances a and /3 from the centre of gravity,

method, as is the case for instance where we are able to give the

centre of oscillation for any point of suspension, we

can construct k. We lay off (Fig. 122) a and (5 con-

secutively on a straight line, describe a semicircle on

a + fi as diameter, and erect a perpendicular at the

point of junction of the two divisions a and /i. On this

perpendicular the semicircle cuts off k. If on the other

hand we know k, then for every value of a, say A, a

value pi is obtainable that will give the same period

of oscillation as A. We construct (Fig. 123) with A

and k as sides a right angle, join their extremities by a

straight line on which we erect at the extremity of k a

perpendicular which cuts off on A produced the por-

tion //.

Now let us imagine any body whatsoever (Fig. 124)

with the centre of gravity O. We place it in the plane
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of the drawing, and make it swing about all possible An niustra-

• 1 1 11 r i
tionofthis

parallel axes at right angles to the plane 01 the paper, idea.

All the axes that pass through the circle a are, we
find, with respect to period of oscillation, interchange-

able with each other and also with those that pass

through the circle fi. If instead of a we take a smaller

circle A, then in the place of /? we shall get a larger

Fig. 124.

circle jd. Continuing in this manner, both circles ul-

timately meet in one with the radius k.

26. We have dwelt at such length on the foregoing Recapituia-

matters for good reasons. In the first place, they have

served our purpose of displaying in a clear light the

splendid results of the investigations of Huygens. For

all that we have given is virtually contained, though

in somewhat different form, in the writings of Huygens,
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or is at least so approximately presented in them that

it can be supplied without the slightest difficulty. Only

a very small portion of it has found its way into our

modern elementary text-books. One of the proposi-

tions that has thus been incorporated in our elemen-

tary treatises is that referring to the convertibility of

the point of suspension and the centre of oscillation.

The usual presentation, however, is not exhaustive.

Captain Kater, as we know, employed this principle

for determining the exact length of the seconds pen-

dulum.

Function of The points raised in the preceding paragraphs have
the moment , ., , .. . r ,. i- i .

of inertia, also rendered us the service of supplying enlighten-

ment as to the nature of the conception "moment of

inertia." This notion affords us no insight, in point

of principle, that we could not have obtained without

it. But since we save by its aid the individual con-

sideration of the particles that make up a system, or

dispose of them once for all, we arrive by a shorter

and easier way at our goal. This idea, therefore, has

a high import in the economy of mechanics. Poinsot,

after Euler and Segner had attempted a similar object

with less success, further developed the ideas that be-

long to this subject, and by his ellipsoid of inertia and

central ellipsoid introduced further simplifications.

The lesser 27. The investigations of Huygens concerning the

tfons
St

of
a" geometrical and mechanical properties of cycloids are

Huygens. ^ jess jmp0rtance> The cycloidal pendulum, a contriv-

ance in which Huygens realised, not an approximate,

but an exact independence of the time and amplitude

of oscillation, has been dropt from the practice of mod-

ern horology as unnecessary. We shall not, therefore,

enter into these investigations here, however much of

the geometrically beautiful they may present.
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Great as the merits of Huygens are with respect to Huygens's
crowning

the most different physical theories, the art of horology, achieve-
. . . ment.

practical dioptrics, and mechanics in particular, his

chief performance, the one that demanded the greatest

intellectual courage, and that was also accompanied

with the greatest results, remains his enunciation of the

principle by which he solved the problem of the centre

of oscillation. This very principle, however, was the

only one he enunciated that was not adequately appre-

ciated by his contemporaries ; nor was it for a long

period thereafter. We hope to have placed this prin-

ciple here in its right light as identical with the prin-

ciple of vis viva. (See Appendix, XIII., p. 530.)

THE ACHIEVEMENTS OF NEWTON.

i. The merits of Newton with respect to our sub- Newton's

ject were twofold. First, he greatly extended the range

of mechanical physics by his discovery of universal

gravitation. Second, he completed the formal enunciation

of the mechanicalprinciples now generally accepted. Since

his time no essentially new principle has been stated.

All that has been accomplished in mechanics since his

day, has been a deductive, formal, and mathematical

development of mechanics on the basis of Newton's

laws.

2. Let us first cast a glance at Newton's achieve- His great
dIivsicelI

ment in the domain of physics. Kepler had deduced discovery,

from the observations of Tycho Brahe and his own,

three empirical laws for the motion of the planets

about the sun, which Newton by his new view rendered

intelligible. The laws of Kepler are as follows :

1) The planets move about the sun in ellipses, in

one focus of which the sun is situated.
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Kepler's 2) The radius vector joining each planet with the
laws. Their . .

part in the sun describes equal areas in equal times.
discovery, __

3) The cubes of the mean distances of the planets

from the sun are proportional to the squares of

their times of revolution.

He who clearly understands the doctrine of Galileo

and Huygens, must see that a curvilinear motion im-

plies deflective acceleration. Hence, to explain the phe-

nomena of planetary motion, an acceleration must be

supposed constantly directed towards the concave side

of the planetary orbits.

Central ac- Now Kepler's second law, the law of areas, is ex-
celeration

• r 1

explains plained at once by the assumption ot a constant plane-
Kepler's

r J r
.

second law. tary acceleration towards the sun ; or rather, this ac-

celeration is another form of expression for the same

fact. If a radius vector describes

in an element of time the area

ABS (Fig. 125), then in the next

equal element of time, assuming

no acceleration, the area BCS
will be described, where BC =
AB and lies in the prolongation

Fig. 125. of AB. But if the central accel-

eration during the first element of time produces a

velocity by virtue of which the distance BD will be

traversed in the same interval, the next-succeeding

area swept out is not BCS, but BES, where CE is par-

allel and equal to BD. But it is evident that BES=
BCS= ABS. Consequently, the law of the areas con-

stitutes, in another aspect, a central acceleration.

Having thus ascertained the fact of a central accel-

eration, the third law leads us to the discovery of its

character. Since the planets move in ellipses slightly

different from circles, we may assume, for the sake of
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simplicity, that their orbits actually are circles. If R , The formal
ct13.r3.ct6rR

2 , R 3
are the radii and T

1 , T2 , T
2

the respective of this ac-

times of revolution of the planets, Kepler's third law deducibie

1
. f from Kep-may be written as follows : ler's third

law.

R 3 R* R*
2 — 3 — = a constant.

7\* T
2
» T

z
*

But we know that the expression for the central accel-

eration of motion in a circle is <p= \R n 2/T 2
, or

T2 = \n 2 R/cp. Substituting this value we get

cp
x
R

±
2 — cp

2
R

2
2 =z cp

3
R

3
2 — constant ; or

cp = constant /R 2
;

that is to say, on the assumption of a central accelera-

tion inversely proportional to the square of the distance,

we get, from the known laws of central motion, Kep-
ler's third law ; and vice versa.

Moreover, though the demonstration is not easily

put in an elementary form, when the idea of a central

acceleration inversely proportional to the square of the

distance has been reached, the demonstration that this

acceleration is another expression for the motion in

conic sections, of which the planetary motion in ellipses

is a particular case, is a mere affair of mathematical

analysis.

3. But in addition to the intellectual performance The ques-

just discussed, the way to which was fully prepared by physical
cli3.r3CtGrof

Kepler, Galileo, and Huygens, still another achieve- this accei-

ment of Newton remains to be estimated which in no

respect should be underrated. This is an achievement

of the imagination. We have, indeed, no hesitation

in saying that this last is the most important of all.

Of what nature is the acceleration that conditions the

curvilinear motion of the planets about the sun, and

of the satellites about the planets ?
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The steps Newton perceived, with great audacity of thought,

iLiiyied
g
"and first in the instance of the moon, that this accel-

thTIdeao'f eration differed in no substantial respect from the ac-
universal . . . . r -i* . Ti. U
gravitation, celeration of gravity so familiar to us. It was prob-

ably the principle of continuity, which accomplished

so much in Galileo's case, that led him to his dis-

covery. He was wont—and this habit appears to be

common to all truly great investigators—to adhere as

closely as possible, even in cases presenting altered

conditions, to a conception once formed, to preserve

the same uniformity in his conceptions that nature

teaches us to see in her processes. That which is a

property of nature at any one time and in any one

place, constantly and everywhere recurs, though it

may not be with the same prominence. If the attrac-

tion of gravity is observed to prevail, not only on the

surface of the earth, but also on high mountains and in

deep mines, the physical inquirer, accustomed to con-

tinuity in his beliefs, conceives this attraction as also

operative at greater heights and depths than those ac-

cessible to us. He asks himself, Where lies the limit

of this action of terrestrial gravity ? Should its action

not extend to the moon ? With this question the great

flight of fancy was taken, of which, with Newton's in-

tellectual genius, the great scientific achievement was

but a necessary consequence. (See p. 531.)

The appii- Newton discovered first in the case of the moon that

SisTdea to the same acceleration that controls the descent of a

SthSmoon. stone also prevented this heavenly body from moving

away in a rectilinear path from the earth, and that, on

the other hand, its tangential velocity prevented it from

falling towards the earth. The motion of the moon

thus suddenly appeared to him in an entirely new light,

but withal under quite familiar points of view. The
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new conception was attractive in that it embraced ob-

jects that previously were very remote, and it was con-

vincing in that it involved the most familiar elements.

This explains its prompt application in other fields and

the sweeping character of its results.

Newton not only solved by his new conception the its univer-

i r
sal applica-

tnousand years puzzle of the planetary system, buttiontoaii
m sitter

also furnished by it the key to the explanation of a

number of other important phenomena. In the same
way that the acceleration due to terrestrial gravity ex-

tends to the moon and to all other parts of space, so do

the accelerations that are due to the other heavenly

bodies, to which we must, by the principle of contin-

uity, ascribe the same properties, extend to all parts

of space, including also the earth. But if gravitation is

not peculiar to the earth, its seat is not exclusively in the

centre of the earth. Every portion of the earth, how-
ever small, shares it, Every part of the earth attracts,

or determines an acceleration of, every other part.

Thus an amplitude and freedom of physical view were

reached of which men had no conception previously to

Newton's time.

A long series of propositions respecting the action The sweep

of spheres on other bodies situated beyond, upon, or ter of its re-

within the spheres ; inquiries as to the shape of the

earth, especially concerning its flattening by rotation,

sprang, as it were, spontaneously from this view. The
riddle of the tides, the connection of which with the

moon had long before been guessed, was suddenly ex-

plained as due to the acceleration of the mobile masses
of terrestrial water by the moon. (See p. 533.)

4. The reaction of the new ideas on mechanics was
a result which speedily followed. The greatly varying

accelerations which by the new view the same body be-
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the effect came affected with according to its position in space,

ideas
e
o
n
n
ew

suggested at once the idea of variable weight, yet also

mechanics.
pointed to one characteristic property of bodies which

was constant. The notions of mass and weight were

thus first clearly distinguished. The recognised vari-

ability of acceleration led Newton to determine by spe-

cial experiments the fact that the acceleration of gravity

is independent of the chemical constitution of bodies

;

whereby new positions of vantage were gained for the

elucidation of the relation of mass and weight, as will

presently be shown more in detail. Finally, the uni-

versal applicability of Galileo's idea of force was more

palpably impressed on the mind by Newton's perform-

ances than it ever had been before. People could no

longer believe that this idea was alone applicable to the

phenomenon of falling bodies and the processes most

immediately connected therewith. The generalisation

was effected as of itself, and without attracting partic-

ular attention.

Newton's 5. Let us now discuss, more in detail, the achieve-

me
h
ms

V
in ments of Newton as they bear upon the principles of

Sm
d
e°chan" mechanics. In so doing, we shall first devote ourselves

ics '

exclusively to Newton's ideas, seek to bring them for-

cibly home to the reader's mind, and restrict our criti-

cisms wholly to preparatory remarks, reserving the

criticism of details for a subsequent section. On pe-

rusing Newton's work (Philosophic? Naturalis Principia

Mathematics London, 1687), the following things

strike us at once as the chief advances beyond Galileo

and Huygens :

1) The generalisation of the idea of force.

2) The introduction of the concept of mass.

3) The distinct and general formulation of the prin-

ciple of the parallelogram of forces.
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4) The statement of the law of action and reaction.

6. With respect to the first point little is to be His attitude
with regard

added to what has already been said. Newton con- to the idea

. c
.of force.

ceives all circumstances determinative of motion,

whether terrestrial gravity or attractions of planets, or

the action of magnets, and so forth, as circumstances

determinative of acceleration. He expressly remarks

on this point that by the words attraction and the like

he does not mean to put forward any theory concern-

ing the cause or character of the mutual action referred

to, but simply wishes to express (as modern writers

say, in a differential form) what is otherwise expressed

(that is, in an integrated form) in the description of the

motion. Newton's reiterated and emphatic protesta-

tions that he is not concerned with hypotheses as to the

causes of phenomena, but has simply to do with the *

investigation and transformed statement of actualfacts,

—a direction of thought that is distinctly and tersely

uttered in his words "hypotheses non fingo," " I do

not frame hypotheses/'—stamps him as a philosopher

of the highest rank. He is not desirous to astound and The Regu-
c

. . . . . . lae Philoso-

startle, or to impress the imagination by the originality phandi.

of his ideas : his aim is to know Nature. *

* This is conspicuously shown in the rules that Newton formed for the

conduct of natural inquiry (the Regulce Philosophandi) :

" Rule I. No more causes of natural things are to be admitted than such

as truly exist and are sufficient to explain the phenomena of these things.

" Rule II. Therefore, to natural effects of the same kind we must, as far

as possible, assign the same causes ; e. g., to respiration in man and animals
;

to the descent of stones in Europe and in America ; to the light of our kitchen

fire and of the sun ; to the reflection of light on the earth and on the planets.

" Rule III. Those qualities of bodies that can be neither increased nor

diminished, and which are found to belong to all bodies within the reach of

our experiments, are to be regarded as the universal qualities of all bodies.

[Here follows the enumeration of the properties of bodies which has been in-

corporated in all text-books.]

" If it universally appear, by experiments and astronomical observations,

that all bodies in the vicinity of the earth are heavy with respect to the earth,

and this in proportion to the quantity of matter which they severally contain
;
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The New- 7. With regard to the concept of " mass/' it is to

c°ept

a
of
COn

" be observed that the formulation of Newton, which de-

fines mass to be the quantity of matter of a body as

measured by the product of its volume and density, is

unfortunate. As we can only define density as the mass

of unit of volume, the circle is manifest. Newton felt

distinctly that in every body there was inherent a prop-

erty whereby the amount of its motion was determined

and perceived that this must be different from weight.

He called it, as we still do, mass ; but he did not suc-

ceed in correctly stating this perception. We shall re-

vert later on to this point, and shall stop here only to

make the following preliminary remarks.

The expe- 8. Numerous experiences, of which a sufficient num-
riences
which point ber stood at Newton's disposal, point clearly to the ex-
to the exist-

. . . . . . . . .

enceofsuchistence of a property distinct from weight, whereby the
a physical

r . r
.

property. ////. ^^ ^g quantity or motion ot the

body to which it belongs is

determined. If (Fig. 126)

we tie a fly-wheel to a rope

and attempt to lift it by

means of a pulley, we feel

the weight of the fly-wheel.

If the wheel be placed

on a perfectly cylindrical axle and well balanced, it

will no longer assume by virtue of its weight any de-

terminate position. Nevertheless, we are sensible of

that the moon is heavy with respect to the earth in the proportion of its mass,

and our seas with respect to the moon ; and all the planets with respect to one

another, and the comets also with respect to the sun ; we must, in conformity

with this rule, declare, that all bodies are heavy with respect to one anotner.

"Rule IV. In experimental physics propositions collected by induction

from phenomena are to be regarded either as accurately true or very nearly

true, notwithstanding any contrary hypotheses, till other phenomena occur, by

which they are made more accurate, or are rendered subject to exceptions.

"This rule must be adhered to, that the results of induction may not be

annulled by hypotheses."

D
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a powerful resistance the moment we endeavor to set Mass dis-... tinct from
the wheel in motion or attempt to stop it when in mo- weight.

tion. This is the phenomenon that led to the enuncia-

tion of a distinct property of matter termed inertia, or

" force " of inertia—a step which, as we have already

seen, and shall further explain below is unnecessary.

Two equal loads simultaneously raised, offer resistance

by their weight. Tied to the extremities of a cord that

passes over a pulley, they offer resistance to any mo-

tion, or rather to any change of velocity of the pulley,

by their mass. A large weight hung as a pendulum

on a very long string can be held at an angle of slight

deviation from the line of equilibrium with very little

effort. The weight-component that forces the pendu-

lum into the position of equilibrium, is very small.

Yet notwithstanding this we shall experience a con-

siderable resistance if we suddenly attempt to move or

stop the weight. A weight that is just supported by a

balloon, although we have no longer to overcome its

gravity, opposes a perceptible resistance to motion.

Add to this the fact that the same body experiences in

different geographical latitudes and in different parts

of space very unequal gravitational accelerations and

we shall clearly recognise that mass exists as a property

wholly distinct from weight determining the amount of

acceleration which a given force communicates to the

body to which it belongs. (See p. 536.)

o. Important is Newton's demonstration that the Mass meas
. urable by

mass of a body may, nevertheless, under certain con- weight.

ditions, be measured by its weight. Let us suppose a

body to rest on a support, on which it exerts by its weight

a pressure. The obvious inference is that 2 or 3 such

bodies, or one-half or one-third of such a body, will pro-

duce a corresponding pressure 2, 3, \, or \ times as
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The prere-
quisites of
the meas-
urement of
mass by
weight.

Newton's
establish-
ment of
these pre-
requisites.

Fig. 127.

great. If we imagine the acceleration of descent in-

creased, diminished, or wholly removed, we shall ex-

pect that the pressure also will be increased, dimin-

ished, or wholly removed. We thus see, that the pres-

sure attributable to weight increases, decreases, and

. vanishes along with the "quan-

tity of matter" and the magni-

tude of the acceleration of de-

scent. In the simplest manner

imaginable we conceive the pres-

sure/ as quantitatively representable by the product of

the quantity of matter m into the acceleration of descent

g—by p= mg. Suppose now we have two bodies that

exert respectively the weight- pressures /, /', to which

we ascribe the " quantities of matter " m, m', and which

are subjected to the accelerations of descent g, g'; then

p — mg and f = ;//' g' . If, now, we were able to prove,

that, independently of the material (chemical) compo-

sition of bodies, g= g' at every same point on the

earth's surface, we should obtain m/m' —p/p'; that is

to say, on the same spot of the earth's surface, it would

be possible to measure mass by weight.

Now Newton established this fact, that g is inde-

pendent of the chemical composition of bodies, by

experiments with pendulums of equal lengths but dif-

ferent material, which exhibited equal times of oscilla-

tion. He carefully allowed, in these experiments, for

the disturbances due to the resistance of the air ; this

last factor being eliminated by constructing from differ-

ent materials spherical pendulum-bobs of exactly the

same size, the weights of which were equalised by ap-

propriately hollowing the spheres. Accordingly, all

bodies maybe regarded as affected with the same^, and
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their quantity of matter or mass can, as Newton pointed

out, be measured by their weight.

If we imagine a rigid partition placed between an Supply

assemblage of bodies and a magnet, the bodies, if the consjdera-

magnet be powerful enough, or at least the majority

of the bodies, will exert a pressure on the partition.

But it would occur to no one to employ this magnetic

pressure, in the manner we employed pressure due to

weight, as a measure of mass. The strikingly notice-

able inequality of the accelerations produced in the

different bodies by the magnet excludes any such idea.

The reader will furthermore remark that this whole

argument possesses an additional dubious feature, in

that the concept of mass which up to this point has

simply been named and felt as a necessity, but not de-

fined, is assumed by it.

10. To Newton we owe the distinct formulation of The doc-
trine 01 tne

the principle of the composition of forces.* If a body composi-

is simultaneously acted on by two forces (Fig. 128), forces.

of which one would produce the

motion AB and the other the

motion A C in the same interval \___^^Z?
of time, the body, since the two

1 , • j J Fig. 128.

forces and the motions produced

by them are independent of each other, will move in that

interval of time to AD. This conception is in every

respect natural, and distinctly characterises the essen-

tial point involved. It contains none of the artificial

and forced characters that were afterwards imported

into the doctrine of the composition of forces.

We may express the proposition in a somewhat

* Roberval's (1668) achievements with respect to the doctrine of the com-

position of forces are also to be mentioned here. Varignon and Lami have al-

ready been referred to. (See the text, page 36.)
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Discussion different manner, and thus bring it nearer its modern
of the doc-
trine of the form. The accelerations that different forces impart
composi-
tion of to the same body are at the same time the measure of
forces.

these forces. But the paths described in equal times

are proportional to the accelerations. Therefore the

latter also may serve as the measure of the forces. We
may say accordingly : If two forces, which are propor-

tional to the lines AB and AC, act on a body A in the

directions AB and AC, a. motion will result that could

also be produced by a third force acting alone in the

direction of the diagonal of the parallelogram con-

structed on AB and AC and proportional to that di-

agonal. The latter force, therefore, may be substituted

for the other two. Thus, if cp and ip are the two ac-

celerations set up in the directions AB and AC, then

for any definite interval of time /, AB = q)t 2
/2, AC=

ipt 2 /2. If, now, we imagined/? produced in the same
interval of time by a single force determining the accel-

eration x, we get

AD = j/ 2
/2, and AB \AC\ AD = cp : i/s : j.

As soon as we have perceived the fact that the forces are

independent of each other, the principle of the paral-

lelogram of forces is easily reached from Galileo's no-

tion of force. Without the assumption of this inde-

pendence any effort to arrive abstractly and philosoph-

ically at the principle, is in vain.

The law of ii. Perhaps the most important achievement ci
action and ,

,

.
1 ..........

reaction. JNewton with respect to the principles is the distinct

and general formulation of the law of the equality of
action and reaction, of pressure and counter-pressure.

Questions respecting the motions of bodies that exert

a reciprocal influence on each other, cannot be solved

by Galileo's principles alone. A new principle is ne-

cessary that will define this mutual action. Such a
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principle was that resorted to by Huygens in his inves-

tigation of the centre of oscillation. Such a principle

also is Newton's law of action and reaction.

A body that presses or pulls another body is, ac- Newton's
L x -I-11 deduction

cording to Newton, pressed or pulled in exactly the of the law
to ' r r J

of action

same degree by that other body. Pressure and counter- and reac-

1
tion -

pressure, force and counter-force, are always equal to

each other. As the measure of force is defined by

Newton to be the quantity of motion or momentum
(mass X velocity) generated in a unit of time, it conse-

quently follows that bodies that act on each other com-

municate to each other in equal intervals of time equal

and opposite quantities of motion (momenta), or re-

ceive contrary velocities reciprocally proportional to

their masses.

Now, although Newton's law, in the form here ex- The rela-
tive imme-

pressed, appears much more simple, more immediate, diacyof
•

Newton's
and at first glance more admissible than that of Huy- and Huy-

. . gens's prin-

gens, it will be found that it by no means contains less cipies.

unanalysed experience or fewer instinctive elements.

Unquestionably the original incitation that prompted

the enunciation of the principle was of a purely instinc-

tive nature. We know that we do not experience any

resistance from a body until we seek to set it in motion.

The more swiftly we endeavor to hurl a heavy stone

from us, the more our body is forced back by it. Pres-

sure and counter-pressure go hand in hand. The as-

sumption of the equality of pressure and counter-pres-

sure is quite immediate if, using Newton's own illus-

tration, we imagine a rope stretched between two bod-

ies, or a distended or compressed spiral spring between

them.

There exist in the domain of statics very many in-

stinctive perceptions that involve the equality of pres-
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statical ex- sure and counter-pressure. The trivial experience that
periences ,.„ , iri 1 1

•
i i~ ' '

which point one cannot lift one's self by pulling on one s chair is

ence
e

f "he" of this character. In a scholium in which he cites the

physicists Wren, Huygens, and Wallis as his prede-

cessors in the employment of the principle, Newton

puts forward similar reflections. He imagines the

earth, the single parts of which gravitate towards one

another, divided by a plane. If the pressure of the

one portion on the other were not equal to the counter-

pressure, the earth would be compelled to move in the

direction of the greater pressure. But the motion of

a body can, so far as our experience goes, only be de-

termined by other bodies external to it. Moreover,

we might place the plane of division referred to at any

. point we chose, and the direction of the resulting mo-

tion, therefore, could not be exactly determined.

The con- i2. The indistinctness of the concept of mass takes

?nhs°con
a

a very palpable form when we attempt to employ the
nection . .. r . .. . ,

with this principle of the equality of action and reaction dynam-

ically. Pressure and counter-pressure may be equal.

But whence do we know that equal pressures generate

velocities in the inverse ratio of the masses ? Newton,

indeed, actually felt the necessity of an experimental

corroboration of this principle. He cites in a scholium,

in support of his proposition, Wren's experiments on

impact, and made independent experiments himself.

He enclosed in one sealed vessel a magnet and in an-

other a piece of iron, placed both in a tub of water,

and left them to their mutual action. The vessels ap-

proached each other, collided, clung together, and af-

terwards remained at rest. This result is proof of the

equality of pressure and counter-pressure and of equal

and opposite momenta (as we shall learn later on,

when we come to discuss the laws of impact).
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The reader has already felt that the various enunci- The merits
J

. and defects

ations of Newton with respect to mass and the prin- of Newton's
r ill doctrines.

ciple of reaction, hang consistently together, and that

they support one another. The experiences that lie at

their foundation are : the instinctive perception of the

connection of pressure and counter-pressure ; the dis-

cernment that bodies offer resistance to change of ve-

locity independently of their weight, but proportion-

ately thereto ; and the observation that bodies of greater

weight receive under equal pressure smaller velocities.

Newton's sense of what fundamental concepts and prin-

ciples were required in mechanics was admirable. The

form of his enunciations, however, as we shall later in-

dicate in detail, leaves much to be desired. But we have

no right to underrate on this account the magnitude of

his achievements ; for the difficulties he had to conquer

were of a formidable kind, and he shunned them less

than any other investigator.

DISCUSSION AND ILLUSTRATION OF THE PRINCIPLE OF

REACTION.

1. We shall now devote ourselves a moment ex- The princi-

. , pie of reac-

clusively to the Newtonian ideas, and seek to bring the tion.

principle of reaction more clearly home to our mind

V M H 0-
Fig. 129. Fig. 130.

and feeling. If two masses (Fig. 129) M and m act on

one another, they impart to each other, according

to Newton, contrary velocities V and v, which are in-

versely proportional to their masses, so that
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General The appearance of greater evidence may be im-

of the prin- parted to this principle by the following consideration,

action. We imagine first (Fig. 130) two absolutely equal bodies

a, also absolutely alike in chemical constitution. We
set these bodies opposite each other and put them in

mutual action ; then, on the supposition that the in-

fluences of any third body and of the spectator are ex-

cluded, the communication of equal and contrary velo-

cities in the direction of the line joining the bodies is

the sole uniquely determined interaction.

Now let us group together in A (Fig. 131);;/ such

bodies a, and put at B over against them m such

bodies a. We have then before us bodies whose quan-

A a

a a M OTxy@
A B

Fig. 131. Fig. 132.

tities of matter or masses bear to each other the pro-

portion m : m'. The distance between the groups we

assume to be so great that we may neglect the exten-

sion of the bodies. Let us regard now the accelera-

tions a, that every two bodies a impart to each other,

as independent of each other. Every part of A, then,

will receive in consequence of the action of B the ac-

celeration ma, and every part of B in consequence of

the action of A the acceleration m ex—accelerations

which will therefore be inversely proportional to the

masses.

2. Let us picture to ourselves now a mass M (Fig.

132) joined by some elastic connection witji a mass //z,

both masses made up of bodies a equal in all respects.

Let the mass m receive from some external source an

acceleration cp. At once a distortion of the connection

is produced, by which on the one hand m is retarded
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and on the other M accelerated. When both masses The deduc1-11 tion of the

have begun to move with the same acceleration, all notion of

1 • • r

*

• Tr "moving
further distortion of the connection ceases. If we call force."

a the acceleration of M and /3 the diminution of the

acceleration of m, then a= cp— /3, where agreeably

to what precedes aM= fitn. From this follows

aM mcp
a A- a = a A = cp. or« = -n^— •

If we were to enter more exhaustively into the de-

tails of this last occurrence, we should discover that

the two masses, in addition to their motion of progres-

sion, also generally perform with respect to each other

motions of oscillation. If the connection on slight dis-

tortion develop a powerful tension, it will be impos-

sible for any great amplitude of vibration to be reached,

and we may entirely neglect the oscillatory motions,

as we actually have done.

If the expression a= m cpjM -J- m, which deter-

mines the acceleration of the entire system, be ex-

amined, it will be seen that the product m cp plays a

decisive part in its determination. Newton therefore

invested this product of the mass into the acceleration

imparted to it, with the name of "moving force."

M -\- m, on the other hand, represents the entire mass

of the rigid system. We obtain, accordingly, the accel-

eration of any mass m on which the

moving force p acts, from the expres-

sion p/m'.

3. To reach this result, it is not at „.D ' Fig. 133.

all necessary that the two connected

masses should act directly on each other in all their

parts. We have, connected together, let us say, the

three masses m
x , m 2 , m s , where m x

is supposed to act

m
3

m2 m
x
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a condition only on m
2 , and m s

only on m
2

. Let the mass m
1
re-

which does . . . ,

not affect ceive from some external .source the acceleration cp.

the pre- ... . . .

viousre- In the distortion that follows, the
suit.

masses

receive the accelerations

'3

— y — a.

Here all accelerations to the right are reckoned as

positive, those to the left as negative, and it is obvious

that the distortion ceases to increase

when #=/? — y, d = cp — a,

where d m^ = y m 2 , a?n
x
= fim 2

.

The resolution of these equations yields the com-

mon acceleration that all the masses receive ; namely,

*=—r^T—

'

»'l + m
2 + m

<3

—a result of exactly the same form as before. When
therefore a magnet acts on a piece of iron which is

joined to a piece of wood, we need not trouble our-

selves about ascertaining what particles of the wood

are distorted directly or indirectly (through other par-

ticles of the wood) by the motion of the piece of iron.

The considerations advanced will, in some meas-

ure, perhaps, have contributed towards clearly impress-

ing on us the great importance for mechanics of the

Newtonian enunciations. They will also serve, in a

subsequent place, to ren-

der more readily obvious

the defects of these enun-

ciations.

4. Let us now turn to

Fig. 134. a few illustrative physical

examples of the principle of reaction. We consider,

say, a load L on a table T. The table is pressed by

Tf
=7"
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the load just so much, and so much only, as it in return Some phys-
ical exam-

preSSeS the load, that is prevents the same from falling, pies of the

.
principle

If p is the weight, m the mass, and g the acceleration of reaction,

of gravity, then by Newton's conception/~ mg. If

the table be let fall vertically downwards with the ac-

celeration of free descent g, all pressure on it ceases.

We discover thus, that the pressure on the table is de-

termined by the relative acceleration of the load with

respect to the table. If the table fall or rise with the

acceleration y, the pressure on it is respectively m (g—
y) and m (g -\- y). Be it noted, however, that no

change of the relation is produced by a constant velocity

of ascent or descent. The relative acceleratio7i is de-

terminative.

Galileo knew this relation of things very well. The The pres-
sure of the

doctrine of the Aristotelians, that bodies of greater parts of fail

ing bodies.

weight fall faster than bodies of less weight, he not only

refuted by experiments, but cornered his adversaries

by logical arguments. Heavy bodies fall faster than

light bodies, the Aristotelians said, because the upper

parts weigh down on the under parts and accelerate

their descent. In that case, returned Galileo, a small

body tied to a larger body must, if it possesses in se the

property of less rapid descent, retard the larger. There-

fore, a larger body falls more slowly than a smaller

body. The entire fundamental assumption is wrong,

Galileo says, because one portion of a falling body can-

not by its weight under any circumstances press an-

other portion.

A pendulum with the time of oscillation 7"= n V' l/g, a failing

would acquire, if its axis received the downward accel-
pen u um *

eration y, the time of oscillation T= 7tV l/V—~y
f

and if let fall freely would acquire an infinite time of

oscillation, that is, would cease to oscillate.
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The sensa-
tion of fall

Poggen-
dorft's ap-
paratus.

We ourselves, when we jump or fall from an eleva-

tion, experience a peculiar sensation, which must be

due to the discontinuance of the gravitational pressure

of the parts of our body on one another—the blood, and

so forth. A similar sensation, as if the ground were

sinking beneath us, we should have on a smaller planet,

to which we were suddenly transported. The sensation

of constant ascent, like that felt in an earthquake,

would be produced on a larger planet.

5. The conditions referred to are very beautifully

illustrated by an apparatus (Fig. i35<r) constructed

by Poggendorff. A string loaded at both extremities

(^ ]
2/V

6p
Fig. 135a. Fig. 135b.

by a weight P (Fig. 135^) is passed over a pulley c,

attached to the end of a scale-beam. A weight p is

laid on one of the weights first mentioned and tied by

a fine thread to the axis of the pulley. The pulley

now supports the weight 2 P -\- p. Burning away the

thread that holds the over-weight, a uniformly accel-

erated motion begins with the acceleration y, with

which P -j- p descends and P rises. The load on the

pulley is thus lessened, as the turning of the scales in-

dicates. The descending weight P is counterbalanced

by the rising weight P, while the added over-weight,

instead of weighing/, now weighs (p/g)(g— y). And
since y= (p/2 P -\- p) g, we have now to regard the

load on the pulley, not as/, but as/(2 P/2P-\-p). The
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descending weight, only partially impeded in its motion

of descent, exerts only a partial pressure on the pulley.

We may vary the experiment. We pass a thread a variation

iji . . . , • 1 „ i
of the last

loaded at one extremity with the weight P over the experiment

pulleys a, b, d, of the apparatus as indicated in Fig.

Fig. 135c

135^., tie the unloaded extremity at m, and equilibrate

the balance. If we pull on the string at m
f this can-

not directly affect the balance since the direction of the

string passes exactly through its axis. But the side a

immediately falls. The slackening of the string causes

a to rise. An unac celerat
led'motion of the weights would
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The suspen-
sion of mi-
nute bodies
in liquids of

different
specific
gravity.

/
Fig. 136.

Do such
suspended
particles af-

fect the
specific
gravities of
the support-
ing liquids?

not disturb the equilibrium. But we cannot pass from

rest to motion without acceleration.

6. A phenomenon that strikes us at first glance is,

that minute bodies of greater or less specific gravity

than the liquid in which they are immersed, if suffi-

ciently small, remain suspended a very long time in the

liquid. We perceive at once that

particles of this kind have to over-

come the friction of the liquid. If the

cube of Fig. 136 be divided into 8

parts by the 3 sections indicated,

and the parts be placed in a row,

their mass and over-weight will re-

main the same, but their cross-sec-

tion and superficial area, with which the friction goes

hand in hand, will be doubled.

Now, the opinion has at times been advanced with

respect to this phenomenon that suspended particles

of the kind described have no influence on the specific

gravity indicated by an areometer immersed in the

liquid, because these particles are themselves areo-

meters. But it will readily be seen that if the sus-

pended particles rise or fall with constant velocity, as

in the case of very small particles immediately occurs,

the effect on the balance and the areometer must be

the same. If we imagine the areometer to oscillate

about its position of equilibrium, it will be evident

that the liquid with all its contents will be moved with

it. Applying the principle of virtual displacements,

therefore, we can be no longer in doubt that the areo-

meter must indicate the mean specific gravity. We
may convince ourselves of the untenability of the rule

by which the areometer is supposed to indicate only

the specific gravity of the liquid and not that of the sus-
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[tended particles, by the following consideration. In a

liquid A a smaller quantity of a heavier liquid B is in-

troduced and distributed in fine drops. The areometer,

let us assume, indicates only the specific gravity of

A. Now, take more and more of the liquid B, finally

just as much of it as we have of A: we can, then, no

longer say which liquid is suspended in the other, and

which specific gravity, therefore, the areometer must

indicate.

7. A phenomenon of an imposing kind, in which The phe-
. . , , , ,

.

, . nomenon of

the relative acceleration 01 the bodies concerned is the tides,

seen to be determinative of their mutual pressure, is

that of the tides. We will enter into this subject here

only in so far as it may serve to illustrate the point we
are considering. The connection of the phenomenon

of the tides with the motion of the moon asserts itself

in the coincidence of the tidal and lunar periods, in

the augmentation of the tides at the full and new
moons, in the daily retardation of the tides (by about

50 minutes), corresponding to the retardation of the

culmination of the moon, and so forth. As a matter

of fact, the connection of the two occurrences was very

early thought of. In Newton's time people imagined

to themselves a kind of wave of atmospheric pressure,

by means of which the moon in its motion was sup-

posed to create the tidal wave.

The phenomenon of the tides makes, on every one its impos-

that sees it for the first time in its full proportions, antef.°

overpowering impression. We must not be surprised,

therefore, that it is a subject that has actively engaged

the investigators of all times. The warriors of Alex-

ander the Great had, from their Mediterranean homes,

scarcely the faintest idea of the phenomenon of the

tides, and they were, therefore, not a little taken aback
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by the sight of the powerful ebb and flow at the mouth

of the Indus ; as we learn from the account of Curtius

Rufus (JDe Rebus Gestis Alexandra Magni), whose

words we here literally quote :

Extract "34. Proceeding, now, somewhat more slowly in

ifS^Rufils. " their course, owing to the current of the river being

" slackened by its meeting the waters of the sea, they

" at last reached a second island in the middle of the

"river. Here they brought the vessels to the shore,

"and, landing, dispersed to seek provisions, wholly

"unconscious of the great misfortune that awaited

"them.

Describing " 35. It was about the third hour, when the ocean,

on
e
the

e
a
C
rmy "in its constant tidal flux and reflux, began to turn

derthe
an

~ "and press back upon the river. The latter, at first

tidlfat the "merely checked, but then more vehemently repelled,

frTLtvi*. " at last set back in the opposite direction with a force

"greater than that of a rushing mountain torrent.

" The nature of the ocean was unknown to the multi-

tude, and grave portents and evidences of the wrath

"of the Gods were seen in what happened. With

"ever- increasing vehemence the sea poured in, com-

pletely covering the fields which shortly before were

" dry. The vessels were lifted and the entire fleet dis-

persed before those who had been set on shore, ter-

" rifled and dismayed at this unexpected calamity,

"could return. But the more haste, in times of great

"disturbance, the less speed. Some pushed the ships

" to the shore with poles ; others, not waiting to adjust

"their oars, ran aground. Many, in their great haste

"to get away, had not waited for their companions,

"and were barely able to set in motion the huge, un-

" manageable barks; while some of the ships were too

"crowded to receive the multitudes that struggled to
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" get aboard. The unequal division impeded all. TheThedisas-
. . , r

ter to Alex-
" cries of some clamoring to be taken aboard, of others ander's

fleet.

"crying to put off, and the conflicting commands of

"men, all desirous of different ends, deprived every one

"of the possibility of seeing or hearing. Even the

"steersmen were powerless; for neither could their

"cries be heard by the struggling masses nor were their

"orders noticed by the terrified and distracted crews.

"The vessels collided, they broke off each other's oars,

" they plunged against one another. One would think

" it was not the fleet of one and the same army that

" was here in motion, but two hostile fleets in combat.

" Prow struck stern; those that had thrown the fore-

" most in confusion were themselves thrown into con-

tusion by those that followed; and the desperation

"of the struggling mass sometimes culminated in

"hand-to-hand combats.

"36. Already the tide had overflown the fields sur-

" rounding the banks of the river, till only the hillocks

"jutted forth from above the water, like islands.

'
' These were the point towards which all that had given

"up hope of being taken on the ships, swam. The

"scattered vessels rested in part in deep water, where

"there were depressions in the land, and in part lay

"aground in shallows, according as the waves had
" covered the unequal surface of the country. Then,

"suddenly, a new and greater terror took possession

" of them. The sea began to retreat, and its waters

"flowed back in great long swells, leaving the land

"which shortly before had been immersed by the salt

"waves, uncovered and clear. The ships, thus for-

" saken by the water, fell, some on their prows, some
" on their sides. The fields wrere strewn with luggage,

"arms, and pieces of broken planks and oars. The
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The dismay " soldiers dared neither to venture on the land nor to
of the army. ...... A

- , ,

" remain in the ships, for every moment they expected

"something new and worse than had yet befallen

"them. They could scarcely believe that that which

"they saw had really happened—a shipwreck on dry

"land, an ocean in a river. And of their misfortune

" there seemed no end. For wholly ignorant that the

"tide would shortly bring back the sea and again set

" their vessels afloat, they prophesied hunger and dir-

"est distress. On the fields horrible animals crept

"about, which the subsiding floods had left behind.

The efforts "37- The night fell, and even the king was sore
of the king . .. .

and the re- "distressed at the slight hope of rescue. But his so-
turn of the . .

tide. a licitude could not move his unconquerable spirit. He
"remained during the whole night on the watch, and

" despatched horsemen to the mouth of the river, that,

" as soon as they saw the sea turn and flow back, they

"might return and announce its coming. He also

"commanded that the damaged vessels should be re-

paired and that those that had been overturned by

"the tide should be set upright, and ordered all to be

" near at hand when the sea should again inundate the

"land. After he had thus passed the entire night in

"watching and in exhortation, the horsemen came

"back at full speed and the tide as quickly followed.

"At first, the approaching waters, creeping in light

"swells beneath the ships, gently raised them, and,

"inundating the fields, soon set the entire fleet in mo-'

"tion. The shores resounded with the cheers and

" clappings of the soldiers and sailors, who celebrated

" with immoderate joy their unexpected rescue. 'But

" whence/ they asked, in wonderment, 'had the sea

" so suddenly given back these great masses of water?

"Whither had they, on the day previous, retreated?
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" And what was the nature of this element, which now

"opposed and now obeyed the dominion of the hours? '

"As the king concluded from what had happened that

"the fixed time for the return of the tide was after

"sunrise, he set out, in order to anticipate it, at mid-

" night, and proceeding down the river with a few

"ships he passed the mouth and, finding himself at

"last at the goal of his wishes, sailed out 400 stadia

"into the ocean. He then offered a sacrifice to the

"divinities of the sea, and returned to his fleet."

8. The essential point to be noted in the explana- The expia-
-*- ration ot

tion of the tides is, that the earth as a rigid body can the Phe-
7 noniena of

receive but one determinate acceleration towards the the tides,

moon, while the mobile particles of water on the sides

nearest to and remotest from the moon can acquire

various accelerations.

E

Fig. 137.

Let us consider (Fig. 137) on the earths, opposite

which stands the moon M, three points A, B, C. The

accelerations of the three points in the direction of the

moon, if we regard them as free points, are respect-

ively cp -|- A cp, q), cp — A <p. The earth as a whole,

however, has, as a rigid body, the acceleration cp. The

acceleration towards the centre of the earth we will

call g. Designating now all accelerations to the left

as negative, and all to the right as positive, we get the

following table :
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— (tp+dcp), — cp, — (cp — Acp)

+ g — £"•

— cp, — cp, — cp

g—Acp, 0, —^g—Acp),

where the symbols of the first and second lines repre-

sent the accelerations which the free points that head

the columns receive, those of the third line the accel-

eration of corresponding rigid points of the earth, and

those of the fourth line, the difference, or the resultant

accelerations of the free points towards the earth. It

will be seen from this result that the weight of the water

at A and C is diminished by exactly the same amount.

The water will rise at A and C (Fig. 137). A tidal

wave will be produced at these points twice every

day.

a variation It is a fact not always sufficiently emphasised, that
of the phe- .

nomenon. the phenomenon would be an essentially different one

if the moon and the earth were not affected with ac-

celerated motion towards each other but were relatively

fixed and at rest. If we modify the considerations

presented to comprehend this case, we must put for the

rigid earth in the foregoing computation, <p= simply.

We then obtain for

the free points .... A C
the accelerations . .— {cp -\- Acp), — (cp— 4cp),

or (g— Acp) — cp, —O— Acp)— cp

or g* — cp, —(g'+ <P),

where g' = g— A cp. In such case, therefore, the

weight of the water at A would be diminished, and the

weight at C increased ; the height of the water at A
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would be increased, and the height at C diminished.

The water would be elevated only on the side facing

the moon. (Fig. 138.)

Fig. 138.

9. It would hardly be worth while to illustrate An iiiustra-

. . iiii-ii • ilye experi-
propositions best reached deductively, by experiments mem.

that can only be performed with difficulty. But such

experiments are not beyond the limits of possibility.

If we imagine a small iron sphere K to swing as a

conical pendulum about the pole of a

magnet N (Fig. 139), and cover the

sphere with a solution of magnetic sul-

phate of iron, the fluid drop should, if

the magnet is sufficiently powerful, rep-

resent the phenomenon of the tides. But

if we imagine the sphere to be fixed and

at rest with respect to the pole of the

magnet, the fluid drop will certainly not

be found tapering to a point both on

the side facing and the side opposite to

the pole of the magnet, but will remain suspended only

on the side of the sphere towards the pole of the

magnet.

10. We must not, of course, imagine, that the some fur-

. -, , , n
. ther con-

entire tidal wave is produced at once by the action siderations

of the moon. We have rather to conceive the tide

as an oscillatory movement maintained by the moon.

If, for example, we should sweep a fan uniformly and

Fig. 139.
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continuously along over the surface of the water of a

circular canal, a wave of considerable magnitude fol-

lowing in the wake of the fan would by this gentle and

constantly continued impulsion soon be produced. In

like manner the tide is produced. But in the latter

case the occurrence is greatly complicated by the irreg-

ular formation of the continents, by the periodical

variation of the disturbance, and so forth. (See Ap-

pendix, XVII., p. 537.)

v.

CRITICISM OF THE PRINCIPLE OF REACTION AND OF THE

CONCEPT OF MASS.

The con- i- Now that the preceding discussions have made

ma
P
ss°

f

us familiar with Newton's ideas, we are sufficiently

prepared to enter on a critical examination of them.

We shall restrict ourselves primarily in this, to the

consideration of the concept of mass and the principle

of reaction. The two cannot, in such an examination,

be separated ; in them is contained the gist of New-

ton's achievement.

Theexpres- 2. In the first place we do not find the expression

tity'of mat"-" " quantity of matter " adapted to explain and elucidate

the concept of mass, since that expression itself is not

possessed of the requisite clearness. And this is so,

though we go back, as many authors have done, to an

enumeration of the hypothetical atoms. We only com-

plicate, in so doing, indefensible conceptions. If we

place together a number of equal, chemically homo-

geneous bodies, we can, it may be granted, connect

some clear idea with "quantity of matter," and we per-

ceive, also, that the resistance the bodies offer to mo-

tion increases with this quantity. But the moment we

suppose chemical heterogeneity, the assumption that
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there is still something that is measurable by the same Newton's
.

formulation

standard, which something we call quantity of matter, of the con-

may be suggested by mechanical experiences, but is an

assumption nevertheless that needs to be justified.

When therefore, with Newton, we make the assump-

tions, respecting pressure due to weight, that/ = mg,

p' — m'g, and put in conformity with such assumptions

pip' = m/m\ we have made actual use in the operation

thus performed of the supposition, yet to be justified,

that different bodies are measurable by the same stand-

ard.

We might, indeed, arbitrarilyposit, that ///////' =p/p';

that is, might define the ratio of mass to be the ratio

of pressure due to weight when g was the same. But

we should then have to substantiate the use that is made

of this notion of mass in the principle of reaction and

in other relations.

—

>

<—A
~<P

B—>

+ <p'

Fig. 140 a. Fig. 140 b.

2. When two bodies (Fig. 14.0 a), perfectly equal Anew form-
J vo-r/'j- j

illation of

in all respects, are placed opposite each other, we ex- the con-

pect, agreeably to the principle of symmetry, that they

will produce in each other in the direction of their line

of junction equal and opposite accelerations. But if

these bodies .exhibit any difference, however slight, of

form, of chemical constitution, or are in any other re-

spects different, the principle of symmetry forsakes us,

unless we assume or know beforehand that sameness of

form or sameness of chemical constitution, or whatever

else the thing in question may be, is not determina-

tive. If, however, mechanical experiences clearly and

indubitably point to the existence in bodies of a special

and distinct property determinative of aeeelerations,
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Definition
of equal
masses.

Character
of the defi-

nition.

nothing stands in the way of our arbitrarily establish-

ing the following definition :

All those bodies are bodies of equal mass, which, mu-

tually acting on each other, produce in each other equal

and opposite accelerations.

We have, in this, simply designated, or named, an

actual relation of things. In the general case we pro-

ceed similarly. The bodies A and B receive respec-

tively as the result of their mutual action (Fig. 140 b)

the accelerations — cp and -(- <p', where the senses of

the accelerations are indicated by the signs. We say

then, B has cp/cp' times the mass of A. If we take A
as our unit, we assign to that body the mass m which im-

parts to A m times the acceleration that A in the reaction

imparts to it. The ratio of the masses is the negative

inverse ratio of the counter-accelerations. That these

accelerations always have opposite signs, that there

are therefore, by our definition, only positive masses,

is a point that experience teaches, and experience alone

can teach. In our concept of mass no theory is in-'

volved ;
" quantity of matter " is wholly unnecessary in

it ; all it contains is the exact establishment, designa-

tion, and denomination of a fact. (Compare Appendix,

XVIII., p. 539.)

4. One difficulty should not remain unmentioned in

this connection, inasmuch as its removal is absolutely

necessary to the formation of a perfectly clear concept

of mass. We consider a set of bodies, A, B, C, D . . .,

and compare them all with A as unit.

A, B, c, D, E, F.

1, m, 711
,

m"

,

///", m"

We find thus the respective mass-values, 1, m, m 1

,

m" . . . ., and so forth. The question now arises, If we
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select B as our standard of comparison (as our unit), Discussion

shall we obtain for C the mass-value m Im, and for Z>cuityin-
'

.
volved in

the value m"/m, or will perhaps wholly different values the preced-

. . ing forinu-

result? More simply, the question maybe put thus : lation.

Will two bodies B, C, which in mutual action with A
have acted as equal masses, also act as equal masses

in mutual action with each other? No logical necessity

exists whatsoever, that two masses that are equal to a

third mass should also be equal to each other. For

we are concerned here, not with a mathematical, but

with a physical question. This will be rendered quite

clear by recourse to an analogous relation. We place

by the side of each other the bodies A, B, C in the

proportions of weight a, I), c in which they enter into

the chemical combinations AB and AC. There exists,

now, no logical necessity at all for assuming that the

same proportions of weight b, c of the bodies B, C will

also enter into the chemical combination BC. Expe-

rience, however, informs us that they do. If we place

by the side of each other any set of bodies in the pro-

portions of weight in which they combine with the

body A, they will also unite with each other in the

same proportions of weight. But no one can know

this who has not tried it. And this is precisely the case

with the mass-values of bodies.

If we were to assume that the order of combination The order

1'in* °^ combi-

of the bodies, by which their mass-values are deter- nation not

. influential

mined, exerted any influence on the mass-values, the

consequences of such an assumption would, we should

find, lead to conflict with experience. Let us suppose,

for instance (Fig. 141), that we have three elastic

bodies, A, B, C, movable on an absolutely smooth and

rigid ring. We presuppose that A and B in their

mutual relations comport themselves like equal masses
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and that B and C do the same. We are then also

obliged to assume, if we wish to avoid conflicts with

experience, that C and A in their mutual relations act

like equal masses. If we impart to A a velocity, A
will transmit this velocity by impact to B, and B to C.

But if C were to act towards A, say, as a greater mass,

A on impact would acquire a greater

velocity than it originally had while

C would still retain a residue of

what it had. With every revolution

in the direction of the hands of a

watch the vis viva of the system

would be increased. If C were the
Flg- 141 '

smaller mass as compared with A,

reversing the motion would produce the same result.

But a constant increase of vis viva of this kind is at

decided variance with our experience.

The new 5- The concept of mass when reached in the man-

massrn- ner just developed renders unnecessary the special

pHdu/'the enunciation of the principle of reaction. In the con-

reaction
6
° cept of mass and the principle of reaction, as we have

stated in a preceding page, the same fact is twice form-

ulated; which is redundant. If two masses i and 2

act on each other, our very definition of mass asserts

that they impart to each other contrary accelerations

which are to each other respectively as 2:1.

6. The fact that mass can be measured by weight,

where the acceleration of gravity is invariable, can also

be deduced from our definition of mass. We are

sensible at once of any increase or diminution of a pres-

sure, but this feeling affords us only a very inexact and

indefinite measure of magnitudes of pressure. An
exact, serviceable measure of pressure springs from

the observation that every pressure is replaceable by
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the pressure of a number of like and commensurable it also in-

• 1 -r^ 1111 volves the
weights. Every pressure can be counterbalanced by fact that

•i r 1 • 1 • 1 ii- mass can be
the pressure of weights of this kind. Let two bodies measured

, , . • 1 rr 1 • . .... by weight.
;;/ and m be respectively ariected in opposite directions

with the accelerations cp and qj', determined by exter-

nal circumstances. And let the bodies be joined by a

string. If equilibrium prevails, the acceleration <p in

;;/ and the acceleration cp* in /// are exactly balanced

by interaction. For this case, ac-

cordingly, 7n cp = m' cp' . When, <— m /// —

>

therefore, cp — qj' , as is the case ^ ^
when the bodies are abandoned

to the acceleration of gravity, we have, in the case

of equilibrium, also vi = vi . It is obviously imma-
terial whether we make the bodies act on each other

directly by means of a string, or by means of a string

passed over a pulley, or by placing them on the two

pans of a balance. The fact that mass can be meas-

ured by weight is evident from our definition without

recourse or reference to "quantity of matter.

"

7. As soon therefore as we, our attention being The general

drawn to the fact by experience, \\deve perceived in bod- this view,

ies the existence of a specialproperty determinative of

accelerations, our task with .egard to it ends with the

recognition and unequivocal designation of this fact.

Beyond the recognition of this fact we shall not get,

and every venture beyond it will only be productive of

obscurity. All uneasiness will vanish when once we
have made clear to ourselves that in the concept of

mass no theory of any kind whatever is contained, but

simply a fact of experience. The concept has hitherto

held good. It is very improbable, but not impossible,

that it will be shaken in the future, just as the concep-
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tion of a constant quantity of heat, which also rested

on experience, was modified by new experiences.

VI.

newton's views of time, space, and motion.

i. In a scholium which he appends immediately to

his definitions, Newton presents his views regarding

time and space—views which we shall now proceed to

examine more in detail. We shall literally cite, to this

end, only the passages that are absolutely necessary

to the characterisation of Newton's views.

Newton's " So far, my object has been to explain the senses

time, space, << in which certain words little known are to be used in
and motion. - . -

"the sequel. Time, space, place, and motion, being

" words well known to everybody, I do not define. Yet

"it is to be remarked, that the vulgar conceive these

"quantities only in their relation to sensible objects.

"And hence certain prejudices with respect to them
" have arisen, to remove which it will be convenient to

"distinguish them into absolute and relative, true and

"apparent, mathematical and common, respectively.

Absolute "I. Absolute, true, and mathematical time, of it-

tkne
re a

" self, and by its own nature, flows uniformly on, with-

" out regard to anything external. It is also called

i ' duration.

"Relative, apparent, and common time, is some

"sensible and external measure of absolute time (dura-

tion), estimated by the motions of bodies, whether

"accurate or inequable, and is commonly employed
" in place of true time ; as an hour, a day, a month,

"a year. . .

"The natural days, which, commonly, for the pur-

" pose of the measurement of time, are held as equal,

"are in reality unequal. Astronomers correct this in-
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u equality, in order that they may measure by a truer

"time the celestial motions. It may be that there is

" no equable motion, by which time can accurately be

"measured. All motions can be accelerated and re-

" tarded. But the flow of absolute time cannot be

"changed. Duration, or the persistent existence of

" things, is always the same, whether motions be swift

" or slow or null."

2. It would appear as though Newton in the re- Discussion

. . n f
of Newton's

marks here cited still stood under the influence of the view of
time.

mediaeval philosophy, as though he had grown unfaith-

ful to his resolve to investigate only actual facts. When
we say a thing A changes with the time, we mean sim-

ply that the conditions that determine a thing A depend

on the conditions that determine another thing B. The

vibrations of a pendulum take place in time when its

excursion depends on the position of the earth. Since,

however, in the observation of the pendulum, we are

not under the necessity of taking into account its de-

pendence on the position of the earth, but may com-

pare it with any other thing (the conditions of which

of course also depend on the position of the earth), the

illusory notion easily arises that all the things with

which we compare it are unessential. Nay, we may,

in attending to the motion of a pendulum, neglect en-

tirely other external things, and find that for every po-

sition of it our thoughts and sensations are different.

Time, accordingly, appears to be some particular and

independent thing, on the progress of which the posi-

tion of the pendulum depends, while the things that

we resort to for comparison and choose at random ap-

pear to play a wholly collateral part. But we must

not forget that all things in the world are connected

with one another and depend on one another, and that
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General we ourselves and all our thoughts are also a part of

of
S

th

U
eco°n- nature. It is utterly beyond our power to measure the

Slof
changes of things by time. Quite the contrary, time

is an abstraction, at which we arrive by means of the

changes of things ; made because we are not restricted

to any one definite measure, all being interconnected.

A motion is termed uniform in which equal increments

of space described correspond to equal increments of

space described by some motion with which we form a

comparison, as the rotation of the earth. A motion

may, with respect to another motion, be uniform. But

the question whether a motion is in itself uniform, is

senseless. With just as little justice, also, may we

speak of an "absolute time"

—

of a time independent of

change. This absolute time can be measured by com-

parison with no motion ; it has therefore neither a

practical nor a scientific value ; and no one is justified

in saying that he knows aught about it. It is an idle

metaphysical conception.

Further eiu- It would not be difficult to show from the points of

Sefdea. view of psychology, history, and the science of lan-

guage (by the names of the chronological divisions),

that we reach our ideas of time in and through the in-

terdependence of things on one another. In these ideas

the profoundest and most universal connection of things

is expressed. When a motion takes place in time, it

depends on the motion of the earth. This is not refuted

by the fact that mechanical motions can be reversed.

A number of variable quantities may be so related that

one set can suffer a change without the others being

affected by it. Nature behaves like a machine. The

individual parts reciprocally determine one another.

But while in a machine the position of one part de-

termines the position of all the other parts, in nature
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more complicated relations obtain. These relations are

best represented under the conception of a number,

n, of quantities that satisfy a lesser number, ri, of equa-

tions. Were n = ri, nature would be invariable. Were
ri = 11 — 1, then with one quantity all the rest would

be controlled. If this latter relation obtained in na-

ture, time could be reversed the moment this had been

accomplished with any one single motion. But the

true state of things is represented by a different rela-

tion between n and ri. The quantities in question are

partially determined by one another ; but they retain

a greater indeterminateness, or freedom, than in the

case last cited. We ourselves feel that we are such a

partially determined, partially undetermined element

of nature. In so far as a portion only of the changes

of nature depends on us and can be reversed by us,

does time appear to us irreversible, and the time that

is past as irrevocably gone.

We arrive at the idea of time,—to express it briefly Somepsy-
. i . ci i

• 1 chological
and popularly,—by the connection 01 that which is considera-

1 . , . r ... tions.

contained m the province ot our memory with that

which is contained in the province of our sense-percep-

tion. When we say that time flows on in a definite di-

rection or sense, we mean that physical events gene-

rally (and therefore also physiological events) take

place only in a definite sense.* Differences of tem-

perature, electrical differences, differences of level gen-

erally, if left to themselves, all grow less and not

greater. If we contemplate two bodies of different

temperatures, put in contact and left wholly to them-

selves, we shall find that it is possible only for greater

differences of temperature in the field of memory to

* Investigations concerning the physiological nature of the sensations of

time and space are here excluded from consideration.
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Newton's
views of
space and
motion.

Passages
from his
works.

exist with lesser ones in the field of sense-perception,

and not the reverse. In all this there is simply ex-

pressed a peculiar and profound connection of things.

To demand at the present time a full elucidation of this

matter, is to anticipate, in the manner of speculative

philosophy, the results of all future special investiga-

tion, that is a perfect physical science. (Compare Ap-

pendix, XIX., p. 541.)

3. Views similar to those concerning time, are de-

veloped by Newton with respect to space and motion.

We extract here a few passages which characterise his

position.

"II. Absolute space, in its own nature and with-

out regard to anything external, always remains sim-

"ilar and immovable.

"Relative space is some movable dimension or

"measure of absolute space, which our senses deter-

"mine by its position with respect to other bodies,

"and which is commonly taken for immovable [abso-

lute] space ....

" IV. Absolute motion is the translation of a body

"from one absolute place* to another absolute place
;

" and relative motion, the translation from one relative

" place to another relative place. . . .

"
. . . . And thus we use, in common affairs, instead

"of absolute places and motions, relative ones; and

"that without any inconvenience. But in physical

"disquisitions, we should abstract from the senses.

"For it may be that there is no body really at rest, to

"which the places and motions of others can be re-

"ferred. . . .

" The effects by which absolute and relative motions

* The place, or locus of a body, according to Newton, is not its position,

but thepart of space which it occupies. It is either absolute or relative— Trans
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" are distinguished from one another, are centrifugal

"forces, or those forces in circular motion which pro-

" duce a tendency of recession from the axis. For in

"a circular motion which is purely relative no such

"forces exist; but in a true and absolute circular mo-

"tion they do exist, and are greater or less according

"to the quantity of the [absolute] motion.

" For instance. If a bucket, suspended by a long The rota-
x

. ting bucket.

"cord, is so often turned about that finally the cord is

"strongly twisted, then is filled with water, and held

"at rest together with the water ; and afterwards by

" the action of a second force, it is suddenly set whirl-

" ing about the contrary way, and continues, while the

"cord is untwisting itself, for some time in this mo-

"tion; the surface of the water will at first be level,

"just as it was before the vessel began to move ; but,

"subsequently, the vessel, by gradually communicat-

"ing its motion to the water, will make it begin sens-

" ibly to rotate, and the water will recede little by little

" from the middle and rise up at the sides of the ves-

" sel, its surface assuming a concave form. (This ex-

" periment I have made myself.)

" .... At first, when the relative motion of the wa- Relative
and real

" ter in the vessel was greatest, that motion produced motion,

"no tendency whatever of recession from the axis ; the

"water made no endeavor to move towards the cir-

"cumference, by rising at the sides of the vessel, but

" remained level, and for that reason its true circular

"motion had not yet begun. But afterwards, when

"the relative motion of the water had decreased, the

" rising of the water at the sides of the vessel indicated

"an endeavor to recede from the axis; and this en-

" deavor revealed the real circular motion of the water,

" continually increasing, till it had reached its greatest
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" point, when relatively the water was at rest in the

" vessel ....

" It is indeed a matter of great difficulty to discover

"and effectually to distinguish the true from the ap-

" parent motions of particular bodies ; for the parts of

" that immovable space in which bodies actually move,
" do not come under the observation of our senses.

Newton's << Yet the case is not altogether desperate ; for there
criteria for

m m m

distinguish- " exist to guide us certain marks, abstracted partly
ing absolute
from reia- << from the apparent motions, which are the differences
tive motion.

"of the true motions, and partly from the forces that

"are the causes and effects of the true motions. If,

"for instance, two globes, kept at a fixed distance

"from one another by means of a cord that connects

"them, be revolved about their common centre of

"gravity, one might, from the simple tension of the

"cord, discover the tendency of the globes to recede

"from the axis of their motion, and on this basis the

"quantity of their circular motion might be computed.

"And if any equal forces should be simultaneously

" impressed on alternate faces of the globes to augment

"or diminish their circular motion, we might, from

"the increase or decrease of the tension of the cord,

" deduce the increment or decrement of their motion

;

"and it might also be found thence on what faces

"forces would have to be impressed, in order that the

"motion of the globes should be most augmented;

"that is, their rear faces, or those which, in the cir-

cular motion, follow. But as soon as we knew which

"faces followed, and consequently which preceded, we
"should likewise know the direction of the motion.

" In this way we might find both the quantity and the

"direction of the circular motion, considered even in

"an immense vacuum, where there was nothing ex-
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"ternal or sensible with which the globes could be

" compared . . .
."

4. It is scarcely necessary to remark that in the re- Thepredi-~ J
.

cations of

flections here presented Newton has again acted con- Newton
r

. .
are not the

trary to his expressed intention only to investigate actual expression
J r

. . of actual

facts. No one is competent to predicate things about facts.

absolute space and absolute motion ; they are pure

things of thought, pure mental constructs, that cannot

be produced in experience. All our principles of me-

chanics are, as we have shown in detail, experimental

knowledge concerning the relative positions and mo-

tions of bodies. Even in the provinces in which they

are now recognised as valid, they could not, and were

not, admitted without previously being subjected to

experimental tests. No one is warranted in extending

these principles beyond the boundaries of experience.

In fact, such an extension is meaningless, as no one

possesses the requisite knowledge to make use of it.

Let us look at the matter in detail. When we say that Detailed
. . view of the

a body K alters its direction and velocity solely through matter,

the influence of another body K\ we have asserted

a conception that it is impossible to come at unless

other bodies A, B, C . . . . are present with reference

to which the motion of the body K has been estimated.

In reality, therefore, we are simply cognisant of a re-

lation of the body K to A, B, C . . . . If now we sud-*

denly neglect A, B, C . . . . and attempt to speak of

the deportment of the body K in absolute space, we

implicate ourselves in a twofold error. In the first

place, we cannot know how K would act in the ab-

sence of A, B, C. . . .; and in the second place, every

means would be wanting of forming a judgment of the

behaviour of K and of putting to the test what we had
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predicated,—which latter therefore would be bereft of

all scientific significance.

The part Two bodies K and K', which gravitate toward each
which the . . .

bodies of other, impart to each other in the direction of their
space play ... ... .

inthede- line of junction accelerations inversely proportional to
termination . ... .

of motion, their masses ;;/, ;;/ . In this proposition is contained,

not only a relation of the bodies K and K' to one an-

other, but also a relation of them to other bodies. For

the proposition asserts, not only that K and K' suffer

with respect to one another the acceleration designated

by n{jn -(- m'/r 2
), but also that K experiences the ac-

celeration — Km'/r 2 and K' the acceleration -f- xm/r 2

in the direction of the line of junction ; facts which can

be ascertained only by the presence of other bodies.

The motion of a body K can only be estimated by

reference to other bodies A, B, C . . . . But since we
always have at our disposal a sufficient number of

bodies, that are as respects each other relatively fixed,

or only slowly change their positions, we are, in such

reference, restricted to no one definite body and can

alternately leave out of account now this one and now
that one. In this way the conviction arose that these

bodies are indifferent generally.

Thehy- It might be, indeed, that the isolated bodies A. B,
po thesis of

& > >

^

>>
a medium C . . . . play merely a collateral role in the determina-
in space de-
terminative tioil of the motion of the body K, and that this motion
of motion. _

_

J

is determined by a medium in which K exists. In such

a case we should have to substitute this medium for

Newton's absolute space. Newton certainly did not

entertain this idea. Moreover, it is easily demonstrable

that the atmosphere is not this motion-determinative

medium. We should, therefore, have to picture to

ourselves some other medium, filling, say, all space,

with respect to the constitution of which and its kinetic
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relations to the bodies placed in it we have at present

no adequate knowledge. In itself such a state of things

would not belong to the impossibilities. It is known,

from recent hydrodynamical investigations, that a rigid

body experiences resistance in a frictionless fluid only

when its velocity changes. True, this result is derived

theoretically from the notion of inertia ; but it might,

conversely, also be regarded as the primitive fact from

which we have to start. Although, practically, and at

present, nothing is to be accomplished with this con-

ception, we might still hope to learn more in the future

concerning this hypothetical medium ; and from the

point of view of science it would be in every respect

a more valuable acquisition than the forlorn idea of

absolute space. When we reflect that we cannot abol-

ish the isolated bodies A, B, C . . . ., that is, cannot

determine by experiment whether the part they play is

fundamental or collateral, that hitherto they have been

the sole and only competent means of the orientation

of motions and of the description of mechanical facts,

it will be found expedient provisionally to regard all

motions as determined by these bodies.

5. Let us now examine the point on which New- critical
u

. examina-

ton, apparently with sound reasons, rests his distmc- tion of
x r J

# Newton's
tion of absolute and relative motion. If the earth is distinction

. . of absolute

affected with an absolute rotation about its axis, cen- from rela-

tive motion,

trifugal forces are set up in the earth : it assumes an

oblate form, the acceleration of gravity is diminished

at the equator, the plane of Foucault's pendulum ro-

tates, and so on. All these phenomena disappear if

the earth is at rest and the other heavenly bodies are

affected with absolute motion round it, such that the

same relative rotation is produced. This is, indeed, the

case, if we start at? initio from the idea of absolute space.
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But if we take our stand on the basis of facts, we shall

find we have knowledge only of relative spaces and mo-

tions. Relatively, not considering the unknown and

neglected medium of space, the motions of the uni-

verse are the same whether we adopt the Ptolemaic or

the Copernican mode of view. Both views are, indeed,

equally correct ; only the latter is more simple and more

practical. The universe is not twice given, with an

earth at rest and an earth in motion ; but only once,

with its relative motions, alone determinable. It is,

accordingly, not permitted us to say how things would

be if the earth did not rotate. We may interpret the

one case that is given us, in different ways. If, how-

ever, we so interpret it that we come into conflict with

experience, our interpretation is simply wrong. The

principles of mechanics can, indeed, be so conceived,

that even for relative rotations centrifugal forces arise,

interpreta- Newton's experiment with the rotating vessel of

imem water simply informs us, that the relative rotation of

the water with respect to the sides of the vessel pro-

water, duces no noticeable centrifugal forces, but that such

forces are produced by its relative rotation with respect

to the mass of the earth and the other celestial bodies.

No one is competent to say how the experiment would

turn out if the sides of the vessel increased in thickness

and mass till they were ultimately several leagues thick.

The one experiment only lies before us, and our busi-

ness is, to bring it into accord with the other facts

known to us, and not with the arbitrary fictions of our

imagination.

6. We can have no doubts concerning the signifi-

cance of the law of inertia if we bear in mind the man-

ner in which it was reached. To begin with, Galileo

discovered the constancy of the velocity and direction

tion of the
exper
with the
rotating
bucket of
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of a body referred to terrestrial objects. Most terres- The lavy of
inertia in

trial motions are of such brief duration and extent, that the light of

• • in 1 1 1 »
this view -

it is wholly unnecessary to take into account the earth s

rotation and the changes of its progressive velocity with

respect to the celestial bodies. This consideration is

found necessary only in the case of projectiles cast

great distances, in the case of the vibrations of Fou-

cault's pendulum, and in similar instances. When now
Newton sought to apply the mechanical principles dis-

covered since Galileo's time to the planetary system,

he found that, so far as it is possible to form any es-

timate at all thereof, the planets, irrespectively of dy-

namic effects, appear to preserve their direction and

velocity with respect to bodies of the universe that are

very remote and as regards each other apparently fixed,

the same as bodies moving on the earth do with re-

spect to the fixed objects of the earth. The comport-

ment of terrestrial bodies with respect to the earth is

reducible to the comportment of the earth with respect

to the remote heavenly bodies. If we were to assert

that we knew more of moving objects than this their

last -mentioned, experimentally- given comportment

with respect to the celestial bodies, we should render

ourselves culpable of a falsity. When, accordingly, we
say, that a body preserves unchanged its direction and

velocity in space, our assertion is nothing more or less

than an abbreviated reference to the entire universe.

The use of such an abbreviated expression is permit-

ted the original author of the principle, because he

knows, that as things are no difficulties stand in the

way of carrying out its implied directions. But no

remedy lies in his power, if difficulties of the kind men-

tioned present themselves ; if, for example, the re-

quisite, relatively fixed bodies are wanting.
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Thereia- 7. Instead, now, of referring a moving body K to

bodies S
e

space, that is to say to a system of coordinates, let us

view directly its relation to the bodies of the universe,

by which alone such a system of coordinates can be

determined. Bodies very remote from each other, mov-

ing with constant direction and velocity with respect

to other distant fixed bodies, change their mutual dis-

tances proportionately to the time. We may also say,

All very remote bodies—all mutual or other forces ne-

glected—alter their mutual distances proportionately

to those distances. Two bodies, which, situated at a

short distance from one another, move with constant

direction and velocity with respect to other fixed bod-

ies, exhibit more complicated relations. If we should

regard the two bodies as dependent on one another,

and call r the distance, / the time, and a a constant

dependent on the directions and velocities, the formula

would be obtained: (Pr/dt* = (1/r) [tf 2 — (drjdf)*\

It is manifestly much simpler and clearer to regard the

two bodies as independent of each other and to con-

sider the constancy of their direction and velocity with

respect to other bodies.

Instead of saying, the direction and velocity of a

mass ijl in space remain constant, we may also employ

the expression, the mean acceleration of the mass p.

with respect to the masses m, m' , m" . ... at the dis-

tances r, r, /'. ... is = 0, or d2 (2mr/2m)/dt 2 = 0.

The latter expression is equivalent to the former, as

soon as we take into consideration a sufficient number

of sufficiently distant and sufficiently large masses.

The mutual influence of more proximate small masses,

which are apparently not concerned about each other,

is eliminated of itself. That the constancy of direction

and velocity is given by the condition adduced, will be
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seen at once if we construct through u as vertex cones The expres-
sion of the

that cut out different portions of space, and set up the law of iner-

n . . . ., , - , tia in terms
condition with respect to the masses 01 these separate of this re-

portions. We may put, indeed, for the entire space

encompassing ju, d2 (^ mrj2 7/1) jdt 2 = 0. But the

equation in this case asserts nothing with respect to the

motion of //, since it holds good for all species of mo-

tion where jjl is uniformly surrounded by an infinite

number of masses. If two masses jj 19 ju
2
exert on each

other a force which is dependent on their distance r,

then d2 r/dt 2 — (ju
1

-\- jn
2 )f(r). But, at the same time,

the acceleration of the centre of gravity of the two

masses or the mean acceleration of the mass-system

with respect to the masses of the universe (by the prin-

ciple of reaction) remains = ; that is to say,

d 2

~dt 2

2?nr
1

2mr = 0.

When we reflect that the time-factor that enters The neces-
sitv in sci-

into the acceleration is nothing more than a quantity ence of a
, . , r , .

.

, ac considera-
that is the measure of the distances (or angles of rota- tkmof the

. All.
tion) of the bodies of the universe, we see that even in

the simplest case, in which apparently we deal with

the mutual action of only two masses, the neglecting

of the rest of the world is impossible. Nature does not

begin with elements, as we are obliged to begin with

them. It is certainly fortunate for us, that we can,

from time to time, turn aside our eyes from the over-

powering unity of the All, and allow them to rest on

individual details. But we should not omit, ultimately

to complete and correct our views by a thorough con-

sideration of the things which for the time being we
left out of account.

8. The considerations just presented show, that it
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The law of
inertia does
not involve
absolute
space.

Natural
processes
consist in

the equali-
sation of
the differ-

ences of
quantities.

is not necessary to refer the law of inertia to a special

absolute space. On the contrary, it is perceived that

the masses that in the common phraseology exert forces

on each other as well as those that exert none, stand

with respect to acceleration in quite similar relations.

We may, indeed, regard all masses as related to each

other. That accelerations play a prominent part in the

relations of the masses, must be accepted as a fact of

experience ; which does not, however, exclude attempts

to elucidate this fact by a comparison of it with other

facts, involving the discovery of new points of view.

In all the processes of nature the differences of certain

quantities u play a de-

terminative role. Differ-

ences of temperature, of

potential function, and so

forth, induce the natural

processes, which consist

in the equalisation of

The familiar expressions d 2 u/dx 2
,

which are determinative of the

— 9
Fig. 143.

these differences.

d 2 u/dy 2
, d*u/dz

character of the equalisation, may be regarded as the

measure of the departure of the condition of any point

from the mean of the conditions of its environment

—

to which mean the point tends. The accelerations of

masses may be analogously conceived. The great dis-

tances between masses that stand in no especial force-

relation to one another, change proportionately to each

other. If we lay off, therefore, a certain distance p as

abscissa, and another r as ordinate, we obtain a straight

line. (Fig. 143.) Every /--ordinate corresponding to

a definite p-value represents, accordingly, the mean of

the adjacent ordinates. If a force-relation exists be-

tween the bodies, some value d 2 rjdt 2 is determined
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by it which conformably to the remarks above we may
replace by an expression of the form d 2 r/dp 2

. By the

force-relation, therefore, a departure of the r-ordinate

from the mean of the adjacent ordinates is produced,

which would not exist if the supposed force-relation

did not obtain. This intimation will suffice here.

9. We have attempted in the foregoing to give the character... n . rr . . -,. of the new
law of inertia a different expression from that in ordi- expression

rr^i • -11 1 rr for the law
nary use. This expression will, so long as a sum- of inertia,

cient number of bodies are apparently fixed in space,

accomplish the same as the ordinary one. It is as

easily applied, and it encounters the same difficulties.

In the one case we are unable to come at an absolute

space, in the other a limited number of masses only is

within the reach of our knowledge, and the summation

indicated can consequently not be fully carried out. It

is impossible to say whether the new expression would

still represent the true condition of things if the stars

were to perform rapid movements among one another.

The general experience cannot be constructed from the

particular case given us. We must, on the contrary,

ivait until such an experience presents itself. Perhaps

when our physico-astronomical knowledge has been

extended, it will be offered somewhere in celestial

space, where more violent and complicated motions

take place than in our environment. The most impor- The sim-

n • • i • 7 P'est prin-

tant result of our reflexions is, however, that precisely cipies of

. . r mechanics
the apparently simplest mechanical principles are of a very are of a

. r highly com-
complicated character, that these principles arefounded on plicated na-

. 7
tnreandare

uncompleted experiences, nay on experiences that never can ail derived
from expe-

be fully completed, that practically, indeed, they are suf Hence.

ficiently secured, in view of the tolerable stability of our

environment, to serve as the foundation of mathematical

deduction, but that they can by no means themselves be re-
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garded as mathematically established truths but only as

principles that not only admit of constant control by expe-

rience but actually require it. This perception is valu-

able in that it is propitious to the advancement of

science. (Compare Appendix, XX., p. 542.)

SYNOPTICAL CRITIQUE OF THE NEWTONIAN ENUNCIATIONS.

Newton's i. Now that we have discussed the details with
e rations.

su f£c jent particularity, we may pass again under re-

view the form and the disposition of the Newtonian

enunciations. Newton premises to his work several

definitions, following which he gives the laws of mo-

tion. We shall take up the former first.

Mass. "Definition I. The quantity of any matter is the

"measure of it by its density and volume conjointly.

"
. . . This quantity is what I shall understand by the

"term mass or body in the discussions to follow. It is

" ascertainable from the weight of the body in ques-

"tion. For I have found, by pendulum-experiments

"of high precision, that the mass of a body is propor-

" tional to its weight ; as will hereafter be shown.

Quantity of "Definition II. Quantity of motion is the measure

inerda,' " of it by the velocity and quantity of matter con-
force, and . .

accelera- "jointly.

"Definition III. The resident force [vis insita, i. e.

"the inertia] of matter is a power of resisting, by

"which every body, so far as in it lies, perseveres in

"its state of rest or of uniform motion in a straight

"line.

"Definition IV. An impressed force is any action

"upon a body which changes, or tends to change, its

"state of rest, or of uniform motion in a straight line.
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"Definition V. A centripetal force is any force by
" which bodies are drawn or impelled towards, or tend

" in any way to reach, some point as centre.

"Definition VI. The absolute quantity of a centri- Forces cias-

. . .... sifted as ab-
" petal force is a measure of it increasing and dimm- solute, ac-

celerative
" ishing with the efficacy of the cause that propagates and mov-

'

ing.

"it from the centre through the space round about.

"Definition VII. The accelerative quantity of a

"centripetal force is the measure of it proportional to

" the velocity which it generates in a given time.

"Definition VIII. The moving quantity of a cen-

" tripetal force is the measure of it proportional to the

"motion [See Def. 11.] which it generates in a given

" time.

"The three quantities or measures of force thus dis- The reia-

. tions of the
"tmguished, may, for brevity s sake, be called abso- forces thus

• • r
distin-

"lute, accelerative, and moving forces, being, for dis- guished.

"tinction's sake, respectively referred to the centre of

"force, to the places of the bodies, and to the bodies

" that tend to the centre : that is to say, I refer moving

"force to the body, as being an endeavor of the whole

"towards the centre, arising from the collective en-

" deavors of the several parts ; accelerative force to the

" place of the body, as being a sort of efficacy originat-

ing in the centre and diffused throughout all the sev-

" eral places round about, in moving the bodies that

"are at these places ; and absolute force to the centre,

"as invested with some cause, without which moving

"forces would not be propagated through the space

" round about ; whether this latter cause be some cen-

" tral body, (such as is a loadstone in a centre of mag-
" netic force, or the earth in the centre of the force of

" gravity,) or anything else not visible. This, at least,

"is the mathematical conception of forces; for their
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"physical causes and seats I do not in this place con-

" sider.

Thedis- "Accelerating force, therefore, is to moving force,
tinction ... r ,• -r-> ,-,

mathemat- " as velocity is to quantity of motion, tor quantity

physical.
110

"of motion arises from the velocity and the quantity

"of matter; and moving force arises from the accel-

erating force and the same quantity of matter; the

"sum of the effects of the accelerative force on the sev-

"eral particles of the body being the motive force of

"the whole. Hence, near the surface of the earth,

"where the accelerative gravity or gravitating force is

"in all bodies the same, the motive force of gravity or

" the weight is as the body [mass]. But if we ascend

"to higher regions, where the accelerative force of

" gravity is less, the weight will be equally diminished,

"always remaining proportional conjointly to the mass

"and the accelerative force of gravity. Thus, in those

"regions where the accelerative force of gravity is half

"as great, the weight of a body will be diminished by

" one- half. Further, I apply the terms accelerative and

"motive in one and the same sense to attractions and

"to impulses. I employ the expressions attraction, im-

" pulse, or propensity of any kind towards a centre,

"promiscuously and indifferently, the one for the other;

" considering those forces not in a physical sense, but

"mathematically. The reader, therefore, must not

"infer from any expressions of this kind that I may

"use, that I take upon me to explain the kind or the

"mode of an action, or the causes or the physical rea-

"son thereof, or that I attribute forces in a true or

"physical sense, to centres (which are only mathemat-

ical points), when at any time I happen to say that

"centres attract or that central forces are in action.'
5
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2. Definition 1 is, as has already been set forth, a Criticism of

r • ' ™, r .
1

Newton's
pseudo-definition. The concept of mass is not made Definitions.

clearer by describing mass as the product of the volume

into the density, as density itself denotes simply the

mass of unit of volume. The true definition of mass

can be deduced only from the dynamical relations of

bodies.

To Definition it, which simply enunciates a mode
of computation, no objection is to be made. Defini-

tion in (inertia), however, is rendered superfluous by

Definitions iv-viii of force, inertia being included and

given in the fact that forces are accelerative.

Definition iv defines force as the cause of the accel-

eration, or tendency to acceleration, of a body. The
latter part of this is justified by the fact that in the

cases also in which accelerations cannot take place,

other attractions that answer thereto, as the compres-

sion and distension etc. of bodies occur. The cause

of an acceleration towards a definite centre is defined

in Definition v as centripetal force, and is distinguished

in vi, vii, and vin as absolute, accelerative, and mo-

tive. It is, we may say, a matter of taste and of form

whether we shall embody the explication of the idea

of force in one or in several definitions. In point of

principle the Newtonian definitions are open to no ob-

jections.

3. The Axioms or Laws of Motion then follow, of Newton's
. . . - T .

.,
Laws of

which JNewton enunciates three : Motion.

u Law I. Every body perseveres in its state of rest

"or of uniform motion in a straight line, except in so

"far as it is compelled to change that state by im-

" pressed forces."

"Law LL. Change of motion [i. e. of momentum] is

"proportional to the moving force impressed, and takes
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"place in the direction of the straight line in which

"such force is impressed.

"

"Law III Reaction is always equal and opposite

"to action ; that is to say, the actions of two bodies

"upon each other are always equal and directly op-

"posite."

Newton appends to these three laws a number of

Corollaries. The first and second relate to the prin-

ciple of the parallelogram of forces ; the third to the

quantity of motion generated in the mutual action of

bodies ; the fourth to the fact that the motion of the

centre of gravity is not changed by the mutual action

of bodies ; the fifth and sixth to relative motion,

criticism of 4. We readily perceive that Laws i and n are con-

llwTof
1 S

tained in the definitions of force that precede. Ac-
motIon

' cording to the latter, without force there is no accel-

eration, consequently only rest or uniform motion in a

straight line. Furthermore, it is wholly unnecessary

tautology, after having established acceleration as the

measure of force, to say again that change of motion is

proportional to the force. It would have been enough

to say that the definitions premised were not arbitrary

mathematical ones, but correspond to properties of

bodies experimentally given. The third law apparently

contains something new. But we have seen that it is

unintelligible without the correct idea of mass, which

idea, being itself obtained only from dynamical expe-

rience, renders the law unnecessary.

The coroi- The first corollary really does contain something

the^e/aws. new. But it regards the accelerations determined in

a body K by different bodies M, N, P as self-evidently

independent of each other, whereas this is precisely

what should have been explicitly recognised as a fact

of experience. Corollary Second is a simple applica-
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tion of the law enunciated in corollary First. The re-

maining corollaries, likewise, are simple deductions,

that is, mathematical consequences, from the concep-

tions and laws that precede.

5. Even if we adhere absolutely to the Newtonian

points of view, and disregard the complications and in-

definite features mentioned, which are not removed

but merely concealed by the abbreviated designations

"Time" and "Space/' it is possible to replace New-

ton's enunciations by much more simple, methodically

better arranged, and more satisfactory propositions.

Such, in our estimation, would be the following :

a. Experimental Proposition. Bodies set opposite Proposed
. substitu-

each other induce in each other, under certain circum- tions tor

• r 1 1
• ii- ^ie New-

stances to be specified by experimental physics, con- tonian laws
....... . and defini-

trary accelerations in the direction of their line of June- tions.

tion. (The principle of inertia is included in this.)

b. Definition. The mass-ratio of any two bodies is

the negative inverse ratio of the mutually induced ac-

celerations of those bodies.

c. Experimental Proposition. The mass-ratios of

bodies are independent of the character of the physical

states (of the bodies) that condition the mutual accel-

erations produced, be those states electrical, magnetic,

or what not ; and they remain, moreover, the same,

whether they are mediately or immediately arrived at.

d. Experimental Proposition. The accelerations

which any number of bodies A, B, C . . . . induce in a

body K, are independent of each other. (The principle

of the parallelogram of forces follows immediately from

this.)

e. Definition. Moving force is the product of the

mass-value of a body into the acceleration induced in

that body.



time

244 THE SCIENCE OF MECHANICS.

Extent and Then the remaining arbitrary definitions of the al-

of?h!
C

p?o- gebraical expressions "momentum," "vis viva," and

stTtutions." the like, might follow. But these are by no means in-

dispensable. The propositions above set forth satisfy

the requirements of simplicity and parsimony which,

on economico-scientific grounds, must be exacted of

them. They are, moreover, obvious and clear ; for no

doubt can exist with respect to any one of them either

concerning its meaning or its source ;
and we always

know whether it asserts an experience or an arbitrary

convention.

The 6. Upon the whole, we may say, that Newton dis-

meiifeof cerned in an admirable manner the concepts and princi-

fromthe pies that were sufficiently assured to allow of being fur-

v?iwo°f
f

his ther built upon. It is possible that to some extent he

was forced by the difficulty and novelty of his subject,

in the minds of the contemporary world, to great am-

plitude, and, therefore, to a certain disconnectedness

of presentation, in consequence of which one and the

same property of mechanical processes appears several

times formulated. To some extent, however, he was,

as it is possible to prove, not perfectly clear himself

concerning the import and especially concerning the

source of his principles. This cannot, however, ob-

scure in the slightest his intellectual greatness. He

that has to acqlkl^a new point of view naturally can-

not possess it so securely from the beginning as they

that receive it unlaboriously from him. He has done

enough if he has discovered truths on which future

generations can further build. For every new infer-

ence therefrom affords at once a new insight, a new

control, an extension of our prospect, and a clarifica-

tion of our field of view. Like the commander of an

army, a great discoverer cannot stop to institute petty
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inquiries regarding the right by which he holds each™
h
e
ieve_

post of vantage he has won. The magnitude of the ments of
-r ° Newton in

problem to be solved leaves no time for this. But at the light of
-r

%
subsequent

a later period, the case is different. Newton might research,

well have expected of the two centuries to follow that

they should further examine and confirm the founda-

tions of his work, and that, when times of greater scien-

tific tranquillity should come, the principles of the sub-

ject might acquire an even higher philosophical in-

terest than all that is deducible from them. Then prob-

lems arise like those just treated of, to the solution of

which, perhaps, a small contribution has here been

made. We join with the eminent physicists Thomson

and Tait, in our reverence and admiration of Newton.

But we can only comprehend with difficulty their opin-

ion that the Newtonian doctrines still remain the best

and most philosophical foundation of the science that

can be given.

VIII.

RETROSPECT OF THE DEVELOPMENT OF DYNAMICS.

i If we pass in review the period in which the de- The chief
"- •

-t^ r result, the

velopment of dynamics fell,—a period inaugurated by ^covery^

Galileo, continued by Huygens, and brought to a close fact,

by Newton,—its main result will be found to be the

perception, that bodies mutually determine in each

other accelerations dependent on definite spatial and

material circumstances, and that there are masses. The

reason the perception of these facts was embodied in

so great a number of principles is wholly an historical

one ; the perception was not reached at once, but slowly

and by degrees. In reality only one great fact was es-

tablished. Different pairs of bodies determine, inde-

pendently of each other, and mutually, in themselves,
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pairs of accelerations, whose terms exhibit a constant

ratio, the criterion and characteristic of each pair.

This fact Not even men of the calibre of Galileo, Huygens,
6V6I1 the
greatest in- and Newton were able to perceive this fact at once.
quirers

i i i -i
• • • i •

could per- .bven they could only discover it piece by piece, as it
ceive only . i • i i it it • i • 1

in frag- is expressed in the law of falling bodies, in the special
ments.

law of inertia, in the principle of the parallelogram of

forces, in the concept of mass, and so forth. To-day,

no difficulty any longer exists in apprehending the unity

of the whole fact. The practical demands of communi-

cation alone can justify its piecemeal presentation in

several distinct principles, the number of which is really

only determined by scientific taste. What is more, a

reference to the reflections above set forth respecting

the ideas of time, inertia, and the like, will surely con-

vince us that, accurately viewed, the entire fact has,

in all its aspects, not yet been perfectly apprehended.

The results The point of view reached has, as Newrton expressly
reached .

havenoth- states, nothing to do with the " unknown causes of

with the so- natural phenomena. That which in the mechanics of

"causes" the present day is called force is not a something that
of phenom- .

ena. lies latent m the natural processes, but a measurable,

actual circumstance of motion, the product of the mass

into the acceleration. Also when we speak of the at-

tractions or repulsions of bodies, it is not necessary to

think of any hidden causes of the motions produced.

We signalise by the term attraction merely an actually

existing resemblance between events determined by con-

ditions of motion and the results of our volitional im-

pulses. In both cases either actual motion occurs or,

when the motion is counteracted by some other circum-

stance of motion, distortion, compression of bodies,

and so forth, are produced.

2. The work which devolved on genius here, was
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the noting of the connection of certain determinative The form of

1 1 I'l rr->1 •
tne me"

elements 01 the mechanical processes. The precise es- chanicai

1 1 • 1 r • • i
principles,

tablishment of the form of this connection was rather a in the main

task for plodding research, which created the different icai origin,

concepts and principles of mechanics. We can de-

termine the true value and significance of these prin-

ciples and concepts only by the investigation of their

historical origin. In this it appears unmistakable at

times, that accidental circumstances have given to the

course of their development a peculiar direction, which

under other conditions might have been very different.

Of this an example shall be given.

Before Galileo assumed the familiar fact of the de- For exam-

pendence of the final velocity on the time, and put it to leo's laws
• ii iii of falling

the test of experiment, he essayed, as we have already bodies

t rr i i- 1 1 1 r 1 1 •
might have

seen, a different hypothesis, and made the final velocity taken a dif-

•
1 1 1 -i 1 tt • -ii ferentform.

proportional to the space described. He imagined, by a

course of fallacious reasoning, likewise already referred

to, that this assumption involved a self-contradiction.

His reasoning was, that twice any given distance of de-

scent must, by virtue of the double final velocity ac-

quired, necessarily be traversed in the same time as the

simple distance of descent. But since the first half is

necessarily traversed first, the remaining half will have

to be traversed instantaneously, that is in an interval

of time not measurable. Whence, it readily follows,

that the descent of bodies generally is instantaneous.

The fallacies involved in this reasoning are manifest. Galileo's

1
. , . reasoning

Galileo was, 01 course, not versed in mental Integra- and its

tions, and having at his command no adequate methods

for the solution of problems whose facts were in any

degree complicated, he could not but fall into mistakes

whenever such cases were presented. If we call s the

distance and / the time, the Galilean assumption reads
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in the language of to-day ds/dt = as, from which fol-

lows s = A e
nt

, where a is a constant of experience and

A a constant of integration. This is an entirely different

conclusion from that drawn by Galileo. It does not

conform, it is true, to experience, and Galileo would

probably have taken exception to a result that, as a

condition of motion generally, made s different from

when / equalled 0. But in itself the assumption is by

no means ^//"-contradictory.

Thesuppo- Let us suppose that Kepler had put to himself the

Kepierhad same question. Whereas Galileo always sought after

"eo's
e
re-

a
' the very simplest solutions of things, and at once re-

jected hypotheses that did not fit, Kepler's mode of pro-

cedure was entirely different. He did not quail before

the most complicated assumptions, but worked his way,

by the constant gradual modification of his original

hypothesis, successfully to his goal, as the history of

his discovery of the laws of planetary motion fully

shows. Most likely, Kepler, on finding the assumption

ds/dt = as would not work, would have tried a num-

ber of others, and among them probably the correct one

ds/dt = a Vs. But from this would have resulted an

essentially different course of development for the sci-

ence of dynamics.

It was only gradually and with great difficulty that

the concept of "work" attained its present position

of importance ; and in our judgment it is to the above-

mentioned trifling historical circumstance that the diffi-

culties and obstacles it had to encounter are to be as-

cribed. As the interdependence of the velocity and the

time was, as it chanced, first ascertained, it could not

be otherwise than that the relation v= gt should appear

as the original one, the equation s = gt 2 /2 as the next

immediate, and gs = v 2 /2 as a remoter inference. In-

In such a
case the
concept
" work "

might have
been the
original
concept of
mechanics.
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troducing the concepts mass (;;/) and force (/), where

p = mg, we obtain, by multiplying the three equations

by m, the expressions mv=pt, ms =pt 2
/2, ps =

mv 2 ji—the fundamental equations of mechanics. Of

necessity, therefore, the concepts force and momentum

{inv) appear more primitive than the concepts work (ps)

and vis viva (mv 2
). It is not to be wondered at, accord-

ingly, that, wherever the idea of work made its appear-

ance, it was always sought to replace it by the histor-

ically older concepts. The entire dispute of the Leib-

nitzians and Cartesians, which was first composed in

a manner by D'Alembert, finds its complete explana-

tion in this fact.

From an unbiassed point of view, we have exactly Justifies-
r tion or tins

the same right to inquire after the interdependence of view.

the final velocity and the time as after the interde-

pendence of the final velocity and the distance, and to

answer the question by experiment. The first inquiry

leads us to the experiential truth, that given bodies in

contraposition impart to each other in given times defi-

nite increments of velocity. The second informs us,

that given bodies in contraposition impart to each other

for given mutual displacements definite increments of

velocities. Both propositions are equally justified, and

both may be regarded as equally original.

The correctness of this view has been substantiated ExemP iifi
:

cation of it

in our own day by the example of T. R. Mayer. Mayer, in modem
J J i. j times.

a modern mind of the Galilean stamp, a mind wholly

free from the influences of the schools, of his own in-

dependent accord actually pursued the last-named

method, and produced by it an extension of science

which the schools did not accomplish until later in a

much less complete and less simple form. For Mayer,

work was the original concept. That which is called
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work in the mechanics of the schools, he calls force.

Mayer's error was, that he regarded his method as the

only correct one.

The results 3. We may, therefore, as it suits us, regard the time

flom it.

°W
of descent or the distance of descent as the factor de-

terminative of velocity. If we fix our attention on

the first circumstance, the concept of force appears as

the original notion, the concept of work as the derived

one. If we investigate the influence of the second fact

first, the concept of work is the original notion. In

the transference of the ideas reached in the observation

of the motion of descent to more complicated relations,

force is recognised as dependent on the distance be-

tween the bodies—that is, as a function of the distance,

/(>). The work done through the element of distance dr

is then/(>) dr. By the second method of investiga-

tion work is also obtained as a function of the distance,

F (r) ; but in this case we know force only in the form

d.F(f)/dr—that is to say, as the limiting value of the

ratio : (increment of work)/(increment of distance.)

The prefer- Galileo cultivated by preference the first of these

d?ffere°nUn
e
two methods. Newton likewise preferred it. Huygens

qulrers
' pursued the second method, without at all restricting

himself to it. Descartes elaborated Galileo's ideas after

a fashion of his own. But his performances are in-

significant compared with those of Newton and Huy-

gens, and their influence was soon totally effaced. After

Huygens and Newton, the mingling of the two spheres

of thought, the independence and equivalence of which

are not always noticed, led to various blunders and

confusions, especially in the dispute between the Car-

tesians and Leibnitzians, already referred to, concern-

ing the measure of force. In recent times, however, in-

quirers turn by preference now to the one and now to
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the other. Thus the Galileo- Newtonian ideas are culti-

vated with preference by the school of Poinsot, the

Galileo-Huygenian by the school of Poncelet.

4. Newton operates almost exclusively with the no- The impor-

TT- r
tance and

tions of force, mass, and momentum. His sense of the history of
the New-

value of the concept of mass places him above his prede- tonian con-

. . . cept of

cessors and contemporaries. It did not occur to Galileo mass.

that mass and weight were different things. Huygens,

too, in all his considerations, puts weights for masses

;

as for example in his investigations concerning the

centre of oscillation. Even in the treatise De Percus-

sione (On Impact), Huygens always says "corpus ma-

jus," the larger body, and "corpus minus," the smaller

body, when he means the larger or the smaller mass.

Physicists were not led to form the concept mass till

they made the discovery that the same body can by the

action of gravity receive different accelerations. The
first occasion of this discovery was the pendulum-ob-

servations of Richer (1671-1673),—from which Huy-
gens at once drew the proper inferences,—and the

second was the extension of the dynamical laws to the

heavenly bodies. The importance of the first point may
be inferred from the fact that Newton, to prove the pro-

portionality of mass and weight on the same spot of the

earth, personally instituted accurate observations on

pendulums of different materials (Principia. Lib. II,

Sect. VI, De Motu et Resistentia Corporum Funependu-

loruni). In the case of John Bernoulli, also, the first

distinction between mass and weight (in the Meditatio

de Natura Centri Oscillationis. Opera Omnia, Lausanne

and Geneva, Vol. II, p. 168) was made on the ground

of the fact that the same body can receive different

gravitational accelerations. Newton, accordingly, dis-

poses of all dynamical questions involving the relations
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of several bodies to each other, by the help of the ideas

of force, mass, and momentum.
Themeth- 5. Huygens pursued a different method for the so-

gers?
uy

~
lution of these problems. Galileo had previously dis-

covered that a body rises by virtue of the velocity ac-

* quired in its descent to exactly the same height as that

from which it fell. Huygens, generalising the principle

(in his Horologhim Oscillatoriuni) to the effect that the

centre of gravity of any system of bodies will rise by

virtue of the velocities acquired in its descent to ex-

actly the same height as that from which it fell, reached

the principle of the equivalence of work and vis viva.

The names of the formulae which he obtained, were,

of course, not supplied until long afterwards.

The Huygenian principle of work was received by

the contemporary world with almost universal distrust.

People contented themselves with making use of its

brilliant consequences. It was always their endeavor

to replace its deductions by others. Even after John

and Daniel Bernoulli had extended the principle, it

was its fruitfulness rather than its evidency that was

valued.

Themeth- We observe, that the Galileo-Newtonian principles
odsofNew-

t r j-i • a.
• i- -i. j

ton and were, on account of their greater simplicity and ap-

compared. parently greater evidency, invariably preferred to the

Galileo-Huygenian. The employment of the latter is

exacted only by necessity in cases in which the em-

ployment of the former, owing to the laborious atten-

tion to details demanded, is impossible ; as in the case

of John and Daniel Bernoulli's investigations of the

motion of fluids.

If we look at the matter closely, however, the same

simplicity and evidency will be found to belong to the

Huygenian principles as to the Newtonian proposi-
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tions. That the velocity of a body is determined by

the time of descent or determined by the distance of

descent, are assumptions equally natural and equally

simple. The form of the law must in both cases be

supplied by experience. As a starting-point, therefore,

pt = mv said ps = ///z.'
2 /2 are equally well fitted.

6. When we pass to the investigation of the motion The neces^
r

.
sity and

of several bodies, we are again compelled, in both cases, universai-
9 ° x

ity of the

to take a second step of an equal degree of certainty, twometh-

The Newtonian idea of mass is justified by the fact,

that, if relinquished, all rules of action for events would

have an end ; that we should forthwith have to expect

contradictions of our commonest and crudest experi-

ences ; and that the physiognomy of our mechanical

environment would become unintelligible. The same

thing must be said of the Huygenian principle of work.

If we surrender the theorem 2ps — Hmv2
/2, heavy

bodies will, by virtue of their own weights, be able to

ascend higher ; all known rules of mechanical occur-

rences will have an end. The instinctive factors which

entered alike into the discovery of the one view and of

the other have been already discussed.

The two spheres of ideas could, of course, have The points

-p^ of contact

grown up much more independently of each other. But of the two
to ± f J

methods.

in view of the fact that the two were constantly in con-

tact, it is no wonder that they have become partially

merged in each other, and that the Huygenian appears

the less complete. Newton is all-sufficient with his

forces, masses, and momenta. Huygens would like-

wise suffice with work, mass, and vis viva. But since

he did not in his time completely possess the idea of

mass, that idea had in subsequent applications to be

borrowed from the other sphere. Yet this also could

have been avoided. If with Newton the mass-ratio of
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two bodies can be denned as the inverse ratio of the

velocities generated by the same force, with Huygens

it would be logically and consistently definable as the

inverse ratio of the squares of the velocities generated

by the same work.

The respec- The two spheres of ideas consider the mutual de-

oVea'ch
018

pendence on each other of entirely different factors of

the same phenomenon. The Newtonian view is in so

far more complete as it gives us information regarding

the motion of each mass. But to do this it is obliged

to descend greatly into details. The Huygenian view

furnishes a rule for the whole system. It is only a con-

venience, but it is then a mighty convenience, when

the relative velocities of the masses are previously and

independently known.

The gen- 7. Thus we are led to see, that in the develop-

opmemof" ment of dynamics, just as in the development of statics,

in the n
C
ght the connection of widely different features of mechanical

ceding
P
r

r

e-" phenomena engrossed at different times the attention,

of inquirers. We may regard the momentum of a sys-

tem as determined by the forces ; or, on the other

hand, we may regard its vis viva as determined by the

work. In the selection of the criteria in question the

individuality of the inquirers has great scope. It will

be conceived possible, from the arguments above pre-

sented, that our system of mechanical ideas might,

perhaps, have been different, had Kepler instituted

the first investigations concerning the motions of fall-

ing bodies, or had Galileo not committed an error in

his first speculations. We shall recognise also that not

only a knowledge of the ideas that have been accepted

and cultivated by subsequent teachers is necessary for

the historical understanding of a science, but also that

the rejected and transient thoughts of the inquirers,

marks.
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nay even apparently erroneous notions, may be very

important and very instructive. The historical investi-

gation of the development of a science is most needful,

lest the principles treasured up in it become a system

of half-understood prescripts, or worse, a system of

prejudices. Historical investigation not only promotes

the understanding of that which now is, but also brings

new possibilities before us, by showing that which ex-

ists to be in great measure conventional and accidental.

From the higher point of view at which different paths

of thought converge we may look about us with freer

powers of vision and discover routes before unknown.

In all the dynamical propositions that we have dis- The substi-

• a 1 /-tm
tution of

cussed, velocity plays a prominent role. The reason "integral"

r 1 «ii f°r "differ'

of this, in our view, is, that, accurately considered, entiai"

i r *aws may
every single body of the universe stands in some den- some day

. 111-1 • make the
nite relation with every other body in the universe ; concept of

force super-

that any one body, and consequently also any several fluous.

bodies, cannot be regarded as wholly isolated. Our

inability to take in all things at a glance alone compels

us to consider a few bodies and for the time being to

neglect in certain aspects the others ; a step accom-

plished by the introduction of velocity, and therefore

of time. We cannot regard it as impossible that inte-

gral laws, to use an expression of C. Neumann, will

some day take the place of the laws of mathematical

elements, or differential laws, that now make up the

science of mechanics, and that we shall have direct

knowledge of the dependence on one another of the

positions of bodies. In such an event, the concept of

force will have become superfluous. (See Appendix,

XXL, p. 548, on Hertz's Mechanics ; also Appendix

XXII., p. 555, in answer to criticisms of the views ex-

pressed by the author in Chapters I. and II.)



CHAPTER III.

THE EXTENDED APPLICATION OF THE PRINCIPLES

OF MECHANICS AND THE DEDUCTIVE DE-

VELOPMENT OF THE SCIENCE.

Newton's
principles
are uni-
versal in
scope and
power.

SCOPE OF THE NEWTONIAN PRINCIPLES.

i. The principles of Newton suffice by themselves,

without the introduction of any new laws, to explore

thoroughly every mechanical phenomenon practically

occurring, whether it belongs to statics or to dynamics.

If difficulties arise in any such consideration, they are

invariably of a mathematical, or

formal, character, and in no re-

spect concerned with questions

of principle. We have given,

let us suppose, a number of mas-

ses m lf m 2
,m

3
. . . . in space, with

definite initial velocities v
x , v

2 ,

v
9

. . . . We imagine, further, lines

m+Y^-v* of junction drawn between every

Fig. 144. two masses. In the directions of

these lines of junction are set up the accelerations and

counter-accelerations, the dependence of which on the

distance it is the business of physics to determine. In

a small element of time r the mass w
5 , for example,

will traverse in the direction of its initial velocity the

distance v r r t
and in the directions of the lines joining
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it with the masses m lf m
2 , ;;/

3
. . . ., being affected in Schematic

such directions with the accelerations cp\, cp\, <pt.
. . ., ofthepre-

the distances {cp\/2)r 2
,

(<p|/2)r 2
, (<p|/2)r 2

. . . . If statement,

we imagine all these motions to be performed indepen-

dently of each other, we shall obtain the new position

of the mass m
5

after lapse of time r. The composition

of the velocities v^ and q)\r, cp\r, cp\r . . . . gives the

new initial velocity at the end of time r. We then

allow a second small interval of time r to elapse, and,

making allowance for the new spatial relations of the

masses, continue in the same way the investigation of

the motion. In like manner we may proceed with

every other mass. It will be seen, therefore, that, in

point of principle, no embarrassment can arise ; the

difficulties which occur are solely of a mathematical

character, where an exact solution in concise symbols,

and not a clear insight into the momentary workings

of the phenomenon, is demanded. If the accelerations

of the mass m
5 , or of several masses, collectively neu-

tralise each other, the mass m
5
or the other masses

mentioned are in equilibrium and will move uniformly

onwards with their initial velocities. If, in addition,

the initial velocities in question are = 0, both equilib-

rium and rest subsist for these masses.

Nor, where a number of the masses ;;/
1 , m 2

.... The same

have considerable extension, so that it is impossible to plied to ag-

speak of a single line joining every two masses, is the dif- material

r ,, . . f . . . TTT ,. . ,
particles.

faculty, in point 01 principle, any greater. We divide

the masses into portions sufficiently small for our pur-

pose, and draw the lines of junction mentioned between

every two such portions. We, furthermore, take into

account the reciprocal relation of the parts of the

same large mass ; which relation, in the case of rigid

masses for instance, consists in the parts resisting
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every alteration of their distances from one another.

On the alteration of the distance between any two parts

of such a mass an acceleration is observed proportional

to that alteration. Increased distances diminish, and

diminished distances increase in consequence of this

acceleration. By the displacement of the parts with

respect to one another, the familiar forces of elasticity

are aroused. When masses meet in impact, their

forces of elasticity do not come into play until contact

and an incipient alteration of form take place.

a practical 2. If we imagine a heavy perpendicular column

o"?he sco^e resting on the earth, any particle m in the interior of

principles.'

8
the column which we may choose to isolate in thought,

is in equilibrium and at rest. A vertical downward ac-

celeration g is produced by the earth in the particle,

which acceleration the particle obeys. But in so doing

it approaches nearer to the particles lying beneath it,

and the elastic forces thus awakened generate in m a

vertical acceleration upwards, which ultimately, when

the particle has approached near enough, becomes

equal to g. The particles lying above m likewise

approach m with the acceleration g. Here, again,

acceleration and counter-acceleration are produced,

whereby the particles situated above are brought to

rest, but whereby m continues to be forced nearer and

nearer to the particles beneath it until the acceleration

downwards, which it receives from the particles above

it, increased by g, is equal to the acceleration it re-

ceives in the upward direction from the particles be-

neath it. We may apply the same reasoning to every

portion of the column and the earth beneath it, readily

perceiving that the lower portions lie nearer each other

and are more violently pressed together than the parts

above. Every portion lies between a less closely pressed
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upper portion and a more closely pressed lower por- Rest in the

tion : its downward acceleration g is neutralised by atheseprin-
. . ciples ap-

surplus of acceleration upwards, which it experiences pears as a
r

1 1 1
: i-t,

special case

from the parts beneath. We comprehend the equihb- of motion,

rium and rest of the parts of the column by imagining

all the accelerated motions which the reciprocal rela-

tion of the earth and the parts of the column determine,

as in fact simultaneously performed. The apparent

mathematical sterility of this conception vanishes, and

it assumes at once an animate form, when we reflect

that in reality no body is completely at rest, but that

in all, slight tremors and disturbances are constantly

taking place which now give to the accelerations of de-

scent and now to the accelerations of elasticity a slight

preponderance. Rest, therefore, is a case of motion,

very infrequent, and, indeed, never completely realised.

The tremors mentioned are by no means an unfamiliar

phenomenon. When, however, we occupy ourselves

with cases of equilibrium, we are concerned simply with

a schematic reproduction in thought of the mechanical

facts. We then purposely neglect these disturbances,

displacements, bendings, and tremors, as here they

have no interest for us. All cases of this class, which

have a scientific or practical importance, fall within the

province of the so-called theory of elasticity. The whole The unity
r

.
and homo-

OUtCOme of Newton's achievements is that we every- geneity

.
which these

where reach our goal with one and the same idea, and principles
introduce

by means of it are able to reproduce and construct be- into the
science.

forehand all cases of equilibrium and motion. All

phenomena of a mechanical kind now appear to us

as uniform throughout and as made up of the same
* elements.

3. Let us consider another example. Two mas-

ses ;;/, m are situated at a distance a from each
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a general other. (Fig. 1 45.) When displaced with respect to

catkmof" each other, elastic forces proportional to the change

oflheprin- x2 of distance are supposed to be
cip es " g g . awakened. Let the masses be

x t movable in the X-direction par-

^e- x45. allel to a, and their coordinates

be x lf x
2

. If a force/is applied at the point x
2 , the

following equations obtain :

^ L̂ V
1 =/[(^2 — *i)

— *] • • • (V)

OT -j
iy

2 = -/>[(^ a
-^

1)-«]+/ (*)

where / stands for the force that one mass exerts on

the other when their mutual distance is altered by the

value 1. All the quantitative properties of the me-

chanical process are determined by these equations.

But we obtain these properties in a more comprehensi-

ble form by the integration of the equations. The ordi-

nary procedure is, to find by the repeated differentia-

tion of the equations before us new equations in suffi-

cient number to obtain by elimination equations in x
l

alone or x
2
alone, which are afterwards integrated. We

shall here pursue a different method. By subtracting

the first equation from the second, we get

Thedevel- m LJ>t*Z~-^\) = — 2/[(# 2
— X

± ) — a] + /, Or
opment of at ~

the equa-

utoSdfe
putting*,-*^*,

this exam- /2>/

»^7
*=-

2/[«-«]+/ (3)

and by the addition of the first and the second equa-

tions

d 2 (x 9
4- x.) .

;;/
--J^l—U =/, or, putting x

2 + x
L
= v,
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**>='
_

(4)

The integrals of (Y) and (4) are respectively The integ-& KOJ K^' * J
rals of these

// = A sin-J"^ • / + B cosAp ./-+-<* + -~ and
\ m \ ;;/ Ip

develop-
ments.

. - -I- 67 -4- D; whence
/// 2

/ ^A . Vlp ,
B \Yp ,

. sin* .
/

,,
cos* - •/+., • .,

2 \ /« 2 \ m 1m 2

" / ,

D
+ C/-2—4+2'

^ . |2/> ^ 12/ /" /
2

X
2
= SHU - . / + COS* ~ • / + : . -

;>
-

2 2 \ /// 2 \ ;;/ 2/// 2

To take a particular case, we will assume that the a particu-
r

. lar case oi

action of the force /begins at /= 0, and that at this the exam-

time

ix 9

that is, the initial positions are given and the initial

velocities are = 0. The constants A, B, C, D being

eliminated by these conditions, we get

/___ 1 2/ , ,
/ t* f

\m' ~" 2m ' 2

\ 7/1
' 2 ;// 2 ^ ~ 4/

{- cosA --^. / + tf + \ .

2/ \ /// ~ ^2/

(5) x .
— * cosA , . .

,
.

v J 2 \p \ ;;/ 2/// 2 \p
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Theinform- We see from (5) and (6) that the two masses, in addi-
ation which . ., ., . •iiiri
the result- tion to a uniformly accelerated motion with halt the

tions give acceleration that the force/" would impart to one of
concerning ....

this exam- these masses alone, execute an oscillatory motion sym-

metrical with respect to their centre of gravity. The

duration of this oscillatory motion, T= 2 7tv m/ip, is

smaller in proportion as the force that is awakened in

the same mass-displacement is greater (if our attention

is directed to two particles of the same body, in pro-

portion as the body is harder). The amplitude of os-

cillation of the oscillatory motion f/ip likewise de-

creases with the magnitude/ of the force of displace-

ment generated. Equation (7) exhibits the periodic

change of distance of the two masses during their pro-

gressive motion. The motion of an elastic body might

in such case be characterised as vermicular. With hard

bodies, however, the number of the oscillations is so

great and their excursions so small that they remain

unnoticed, and may be left out of account. The oscil-

latory motion, furthermore, vanishes, either gradually

through the effect of some resistance, or when the two

masses, at the moment the force /begins to act, are a

distance a -(- fJ2p apart and have equal initial veloci-

ties. The distance a + f/^P that the masses are apart

after the vanishing of their vibratory motion, isf/2p

greater than the distance of equilibrium a. A tension

y, namely, is set up by the action of/, by which the

acceleration of the foremost mass is reduced to one-

half whilst that of the mass following is increased by

the same amount. In this, then, agreeably to our as-

This in- sumption, pyjm =f/2 m or y =f/2p. As we see, it is

isexhaus- in our power to determine the minutest details of a

phenomenon of this character by the Newtonian prin-

ciples. The investigation becomes (mathematically,
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yet not in point of principle) more complicated when

we conceive a body divided up into a great number of

small parts that cohere by elasticity. Here also in the

case of sufficient hardness the vibrations may be neg-

lected. Bodies in which we purposely regard the mu-

tual displacement of the parts as evanescent, are called

rigid bodies.

4. We will now consider a case that exhibits the The deduc-~
.

tion of the

schema of a lever. We imagine the masses M, m~, m ty laws of the

. . . lever by

arranged in a triangle and joined by elastic connec- Newton's
& ° J J

principles.

tions. Every alteration of the sides, and consequently

also every alteration of the angles, gives rise to accel-

erations, as the result of which the triangle endeavors to

assume its previous form and size. By the aid of the

Newtonian principles we can deduce from such a

schema the laws of the lever, and at the same time feel

that the form of the deduction, although it may be

more complicated, still

remains admissible when

we pass from a schematic

lever composed of three

masses to the case of a

real lever. The mass M
we assume either to be in itself very large or conceive

it joined by powerful elastic forces to other very large

masses (the earth for instance). M then represents

an immovable fulcrum.

Let m., now, receive from the action of some ex-Themeth-
. 1-1 . .. od of the

ternal force an acceleration/ perpendicular to the line deduction

of junction Mm
2
= c -\- d. Immediately a stretching

of the lines m
t
m

2
= b and m

x
M=a is produced, and

in the directions in question there are respectively set

up the accelerations, as yet undetermined, s and a, of

which the components s(e/fr) and a(e/d) are directed

Fig. 146.
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oppositely to the acceleration/. Here e is the altitude

of the triangle m
x
m

2
M. The mass m

2
receives the

acceleration s'
f
which resolves itself into the two com-

ponents s'(d/b) in the direction of M and s\e/b) par-

allel to f. The former of these determines a slight ap-

proach of m
2

to M. The accelerations produced inM
by the reactions of m

1
and m

2 , owing to its great mass,

are imperceptible. We purposely neglect, therefore,

the motion of M.
The deduc- The mass m

x
, accordingly, receives the accelera-

lailledby tion /

—

s (e/b) — 6(e/a), whilst the mass m
2

suffers

!rat?onof the parallel acceleration s\e/b). Between s and a a

t'ions.

eia
simple relation obtains. If, by supposition, we have a

very rigid connection, the triangle is only impercept-

ibly distorted. The components of s and aperpendicular

to / destroy each other. For if this were at any one

moment not the case, the greater component would

produce a further distortion, which would immediately

counteract its excess. The resultant of s and 6 is

therefore directly contrary to/, and consequently, as is

readily obvious, a (c/a) = s (d/b). Between j- and /,

further, subsists the familiar relation m
x
s = m

2
s' or

s ^=s\m
2
/m

1
). Altogether m

2
and ;;/

1
receive re-

spectively the accelerations s'(e/b) and /

—

*'(?/&)

(m
2
/m

1 )
(c -f d/c), or, introducing in the place of the

variable value s'(e/b) the designation cp, the accelera-

tions <p and/— cp(m
2
/m

1 )
(c -j- d/c).

on the pre- At the commencement of the distortion, the accel-

positions
Up

"

eration of m 19 owing to the increase of cp, diminishes,

the roTadon whilst that of m
2
increases. If we make the altitude e

of the lever . , . . t1 . •.*

are easily of the triangle very small, our reasoning still remains

applicable. In this case, however, a becomes -— c = r
x ,

and a -\- b = c -f- d= r
2

. We see, moreover, that the

distortion must continue, cp increase, and the accelera-
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tion of ;//
x
diminish until the stage is reached at which

the accelerations of m
x
and m

2
bear to each other the

proportion of t\ to r
2

. This is equivalent to a rotation

of the whole triangle (without further distortion) about

M, which mass by reason of the vanishing accelera-

tions is at rest. As soon as rotation sets in, the rea-

son for further alterations of cp ceases. In such a case
;

consequently,

cp = 2{f— cp
2 2

\ or <p = ;-.,
., V

For the angular acceleration ip of the lever we get

t
L = (P = r

i
m if _._

>

r
2

m^r^ -f m 2
r
2
2

'

Nothing prevents us from entering still more into Discussion
r ° of the char-

the details of this case and determining the distortions acter of the
preceding

and vibrations of the parts with respect to each other, result.

With sufficiently rigid connections, however, these de-

tails may be neglected. It will be perceived that we
have arrived, by the employment of the Newtonian prin-

ciples, at the same result to which the Huygenian view

also would have led us. This will not appear strange to

us if we bear in mind that the two views are in every re-

spect equivalent, and merely start from different aspects

of the same subject-matter. If we had pursued the

Huygenian method, we should have arrived more

speedily at our goal but with less insight into the de-

tails of the phenomenon. We should have employed

the work done in some displacement of m
1
to deter-

mine the vires vivce of m
x
and ;//

2 , wherein we should

have assumed that the velocities in question v
x , v

2

maintained the ratio z\/v
2
= r

1
/r

2
. The example

here treated is very well adapted to illustrate what

such an equation of condition means. The equation
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simply asserts, that on the slightest deviations of v
1
/v

2

from r
1
/r

2
powerful forces are set in action which in

point offact prevent all further deviation. The bodies

obey of course, not the equations, but the forces.

a simple 5. We obtain a very obvious case if we put in the

same^xam- example just treated m
1
=m

2
=m and a = b (Fig.

ple '

147). The dynamical state of the system ceases to

2 gi), that is, when the accel-

erations of the masses

at the base and the ver-

tex are given by 2//5

and f/$. At the com-

mencement of the dis-
Fig. 147.

The equi-
librium of

the lever
deduced
from the
same con-
siderations

tortion cp increases, and simultaneously the accelera-

tion of the mass at the vertex is decreased by double

that amount, until the proportion subsists between the

two of 2 : 1.

We have yet to consider the case of equilibrium of

a schematic lever, consisting (Fig. 148) of three masses

;//
1

, m 2 , and 'M, of which the last is again supposed

Fig. 148.

to be very large or to be elastically connected with

very large masses. We imagine two equal and oppo-

site forces s, — s applied to m
±
and m

2
in the direction

m
x
m

2 , or, what is the same thing, accelerations im-

pressed inversely proportional to the masses m lf m 2
.

The stretching of the connection m
±
m

2
also generates
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accelerations inversely proportional to the masses m
L ,

m
2 , which neutralise the first ones and produce equi-

librium. Similarly, along m
1
M imagine the equal and

contrary forces /, — / operative ; and along m
2
M the

forces u, — u. In this case also equilibrium obtains.

If Mbe elastically connected with masses sufficiently

large, — u and — t need not be applied, inasmuch

as the last-named forces are spontaneously evoked the

moment the distortion begins, and always balance the

forces opposed to them. Equilibrium subsists, accord-

ingly, for the two equal and opposite forces s, — s as

well as for the wholly arbitrary forces /, u. As a matter

of fact s, — s destroy each other and /, u pass through

the fixed mass M, that is, are destroyed on distortion

setting in.

The condition of equilibrium readily reduces itself The reduc-

1 n tion of the

to the common form when we reflect that the mo- preceding
case to the

ments of / and u, forces passing through M, are with commo

respect to M zero, while the moments of s and — s are

equal and opposite. If we compound / and s to p, and

u and — s to q t
then, by Vaxignon's geometrical principle

of the parallelogram, the moment of / is equal to the

sum of the moments of s and /, and the moment of q

is equal to the sum of the moments of u and — s. The

moments of/ and q are therefore equal and opposite.

Consequently, any two forces / and q will be in equi-

librium if they produce in the direction m
x
m

2
equal

and opposite components, by which condition the equal-

ity of the moments with respect toM \s posited. That

then the resultant of/ and q also passes through M, is

likewise obvious, for s and — s destroy each other and

/ and u pass through M.
6. The Newtonian point of view, as the example

just developed shows us, includes that of Varignon.

on
form.
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Newton's We were right, therefore, when we characterised the
point of . . . . .

view in- statics of Vangnon as a dynamical statics, which, start-

Varignon's. ing from the fundamental ideas of modern dynamics,

voluntarily restricts itself to the investigation of cases

of equilibrium. Only in the statics of Varignon, owing

to its abstract form, the significance of many opera-

tions, as for example that of the translation of the

forces in their own directions, is not so distinctly ex-

hibited as in the instance just treated.

The econ- The considerations here developed will convince
oray and ...

i i -kt • • 1

wealth of us that we can dispose by the Newtonian principles

ian ideas, of every phenomenon of a mechanical kind which may
arise, provided we only take the pains to enter far

enough into details. We literally see through the cases

of equilibrium and motion which here occur, and be-

hold the masses actually impressed with the accelera-

tions they determine in one another. It is the same

grand fact, which we recognise in the most various

phenomena, or at least can recognise there if we make

a point of so doing. Thus a unity, homogeneity, and

economy of thought were produced, and a new and

wide domain of physical conception opened which

before Newton's time was unattainable.

The New- Mechanics, however, is not altogether an end in it-

themodern, self \ it has also problems to solve that touch the needs

methods, of practical life and affect the furtherance of other sci-

ences. Those problems are now for the most part ad-

vantageously solved by other methods than the New-

tonian,—methods whose equivalence to that has already

been demonstrated. It would, therefore, be mere im-

practical pedantry to contemn all other advantages and

insist upon always going back to the elementary New-

tonian ideas. It is sufficient to have once convinced

ourselves that this is always possible. Yet the New-



THE EXTENSION OF THE PRINCIPLES. 269

toman conceptions are certainly the most satisfactory

and the most lucid ; and Poinsot shows a noble sense

of scientific clearness and simplicity in making these

conceptions the sole foundation of the science.

THE FORMULA AND UNITS OF MECHANICS.

i. All the important formulae of modern mechanics History of

t 1 1 i'i -ir^-, the formu-
were discovered and employed in the period of Galileo 1* and

j xt tm '1 1
units of

and JNewton. Ihe particular designations, which, mechanics,

owing to the frequency of their use, it was found con-

venient to give them, were for the most part not fixed

upon until long afterwards. The systematical mechan-
ical units were not introduced until later still. Indeed,

the last named improvement, cannot be regarded as

having yet reached its completion.

2. Let s denote the distance, / the time, v the in-Theorig-

stantaneous velocity, and cp the acceleration of a uni- tkfns^f
1*"

formly accelerated motion. From the researches of Huygens.
nc

Galileo and Huygens, we derive the following equa-

tions :

v = cpt

(1)

V 2
I

(pS=
2

j

Multiplying throughout by the mass ;;/, these equa- The intro-

tions give the following : cf^mas
and " mov-

m V = m cp t ing force."

m cp
ms = ~~^~t 2

m v 2
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Final form and, denoting the moving force m cp by the letter/, we
of the fun-
damental obtain
equations.

771 V = pt

pt 2

2

ps
771 V 2= ~~9~

;2)

Equations (i) all contain the quantity cp ; and each

contains in addition two of the quantities s, t, v, as

exhibited in the following table :

cp \s,t

I s, V

Equations (2) contain the quantities m, p, s, t, v
;

each containing m, p and in addition to m, p two of the

three quantities s, /, v, according to the following table :

771, p \ S, t

I s, V

The scope Questions concerning motions due to constant forces

cation
1

?!
1"

are answered by equations (2) in great variety. If, for

do
e
ns
e

.

equa" example, we want to know the velocity v that a mass

771 acquires in the time / through the action of a force

/, the first equation gives v =pt/m. If, on the other

hand, the time be sought during which a mass m with

the velocity v can move in opposition to a force /, the

same equation gives us / = m v/p. Again, if we in-

quire after the distance through which in will move with

velocity v in opposition to the force/, the third equa-

tion gives s = 77iv 2
J'2

p. The two last questions illus-

trate, also, the futility of the Descartes-Leibnitzian dis-

pute concerning the measure of force of a body in mo-

tion. The use of these equations greatly contributes



THE EXTENSION' OF THE PRINCIPLES. 271

to confidence in dealing with mechanical ideas. Sup-

pose, for instance, we put to ourselves, the question,

what force p will impart to a given mass m the velocity

v ; we readily see that between m, /, and v alone, no

equation exists, so that either s ox t must be supplied,

and consequently the question is an indeterminate one.

We soon learn to recognise and avoid indeterminate

cases of this kind. The distance that a mass m acted

on by the force p describes in the time /, if moving
with the initial velocity 0, is found by the second equa-

tion s = fit
2 /2 m.

3. Several of the formulae in the above-discussed The names

equations have received particular names. The force formulae
1

of

of a moving body was spoken of by Galileo, who al- tionsTfve

ternately calls it "momentum," "impulse," and "en-
rece ' ve

ergy." He regards this momentum as proportional to

the product of the mass (or rather the weight, for Gali-

leo had no clear idea of mass, and for that matter no
more had Descartes, nor even Leibnitz) into the velo-

city of the body. Descartes accepted this view. He put

the force of a moving body = mv, called it quantity of
motion, and maintained that the sum-total of the quan-

tity of motion in the universe remained constant, so that

when one body lost momentum the loss was compen-
sated for by an increase of momentum in other bodies.

Newton also employed the designation " quantity of

motion " for ;// v, and this name has been retained to the Momen-

present day. [But momentum is the more usual term.] impulse.

For the second member of the first equation, viz. //,
Belanger, proposed, as late as 1847, the name impulse *

The expressions of the second equation have received

* See, also, Maxwell, Matter and Motion, American edition, page 72. But
this word is commonly used in a different sense, namely, as "the limit of a

force which is infinitely great but acts only during an infinitely short time."

See Routh, Rigid Dynamics, Part I, pages 65 66.

—

Trans.
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?is viva no particular designations. Leibnitz (1695) called the
and work.

expression mz ,
2 f the third equation vis viva or living

force, and he regarded it, in opposition to Descartes,

as the true measure of the force of a body in motion,

calling the pressure of a body at rest vis mortua, or

dead force. Coriolis found it more appropriate to give

the term ±mv 2 the name vis viva. To avoid confusion,

Belanger proposed to call;;/?' 2 living force and \mv 2

living power [now commonly called in English kinetic

energy]. For ps Coriolis employed the name work.

Poncelet confirmed this usage, and adopted the kilo-

gramme-metre (that is, a force equal to the weight of a

kilogramme acting through the distance of a metre) as

the unit of work.

The history 4. Concerning the historical details of the origin of

quantity of these notions "quantity of motion " and " vis viva,"

Si?^.
an

a glance may now be cast at the ideas which led Des-

cartes and Leibnitz to their opinions. In his Principia

Philosophic*, published in 1644, II, 36, Descartes ex-

pressed himself as follows :

" Now that the nature of motion has been examined,

" we must consider its cause, which may be conceived

"in two senses : first, as a universal, original cause—

"the general cause of all the motion in the world
;
and

"second, as a special cause, from which the individual

" parts of matter receive motion which before they did

"not have. As to the universal cause, it can mani-

festly be none other than God, who in the beginning

" created matter with its motion and rest, and who now
" preserves, by his simple ordinary concurrence, on the

"whole, the same amount of motion and rest as he

"originally created. For though motion is only a con-

dition of, moving matter, there yet exists in matter

" a definite quantity of it, which in the world at large



THE EXTENSION OF THE PRINCIPLES. 273

" never increases or diminishes, although in single por- Passage
, * . . . , from Des-

" tions it changes; namely, in this way, that we must cartels
, r , r . c

Principia
" assume, m the case 01 the motion 01 a piece 01 matter

"which is moving twice as fast as another piece, but in

" quantity is only one half of it, that there is the same
" amount of motion in both, and that in the proportion

" as the motion of one part grows less, in the same pro-

" portion must the motion of another, equally large

"part grow greater. We recognise it, moreover, as

"a perfection of God, that He is not only in Himself

"unchangeable, but that also his modes of operation

" are most rigorous and constant ; so that, with the ex-

ception of the changes which indubitable experience

"or divine revelation offer, and which happen, as our
" faith or judgment show, without any change in the

"Creator, we are not permitted to assume any others

"in his works—lest inconstancy be in anyway pre-

"dicated of Him. Therefore, it is wholly rational to

"assume that God, since in the creation of matter he

" imparted different motions to its parts, and preserves

"all matter in the same way and conditions in which

"he created it, so he similarly preserves in it the same

" quantity of motion" (See Appendix, XXIII.
, p. 574.)

The merit of having first sought after a more uni- The merits

. . . .
and detects

versal and more fruitful point of view in mechanics, ot Descar-
x

_ m
tes's phys-

cannot be denied Descartes. This is the peculiar task jcai inquir-
ies.

of the philosopher, and it is an activity which con-

stantly exerts a fruitful and stimulating influence on

physical science.

Descartes, however, was infected with all the usual

errors of the philosopher. He places absolute confi-

dence in his own ideas. He never troubles himself to

put them to experiential test. On the contrary, a min-

imum of experience always suffices him for a maximum
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of inference. Added to this, is the indistinctness of

his conceptions. Descartes did not possess a clear

idea of mass. It is hardly allowable to say that Des-

cartes defined mv as momentum, although Descartes's

scientific successors, feeling the need of more definite

notions, adopted this conception. Descartes's greatest

error, however,—and the one that vitiates all his phys-

ical inquiries,—is this, that many propositions appear

to him self-evident a priori concerning the truth of

which experience alone can decide. Thus, in the two

paragraphs following that cited above (§§37-39) it is

asserted as a self-evident proposition that a body pre-

serves unchanged its velocity and direction. The ex-

periences cited in §38 should have been employed, not

as a confirmation of an a priori law of inertia, but as a

foundation on which this law in an empirical sense

should be based.

Leibnitz Descartes's view was attacked by Leibnitz (1686)
on quantity . i • i i

•
±.1.

of motion, in the Acta Eruditorum, m a little treatise bearing the

title :
" A short Demonstration of a Remarkable Error

of Descartes and Others, Concerning the Natural Law

by which they think that the Creator always preserves

the same Quantity of Motion ; by which, however, the

Science of Mechanics is totally perverted.

"

In machines in equilibrium, Leibnitz remarks, the

loads are inversely proportional to the velocities of dis-

placement ; and in this way the idea arose that the

product of a body ("corpus," "moles ") into its velocity

is the measure of force. This product Descartes re-

garded as a constant quantity. Leibnitz's opinion,

however, is, that this measure of force is only acci-

dentally the correct measure, in the case of the ma-

chines. The true measure of force is different, and

must be determined by the method which Galileo and
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Huygens pursued. Every body rises by virtue of the Leibnitz on
. ....... i-i 1

tne incas_
velocity acquired in its descent to a height exactly uro of force.

equal to that from which it fell. If, therefore, we as-

sume, that the same " force " is requisite to raise a

body /// a height 4// as to raise a body 4;;/ a height //,

we must, since we know that in the first case the ve-

locity acquired in descent is but twice as great as in

the second, regard the product of a "body" into the

square of its velocity as the measure offorce.

In a subsequent treatise (1695), Leibnitz reverts to

this subject. He here makes a distinction between

simple pressure (vis morttia) and the force of a moving

body {vis viva), which latter is made up of the sum of

the pressure-impulses. These impulses produce, in-

deed, an "impetus" (mv), but the impetus produced

is not the true measure of force ; this, since the cause

must be equivalent to the effect, is (in conformity with

the preceding considerations) determined by mv 2
.

Leibnitz remarks further that the possibility of per-

petual motion is excluded only by the acceptance of his

measure of force.

Leibnitz, no more than Descartes, possessed a gen- The idea of
mass in

uine concept of mass. Where the necessity of such Leibnitz's

an idea occurs, he speaks of a body {corpus'), of a load

(moles), of different-sized bodies of the same specific

gravity, and so forth. Only in the second treatise, and

there only once, does the expression "massa" occur,

in all probability borrowed from Newton. Still, to de-

rive any definite results from Leibnitz's theory, we must

associate with his expressions the notion of mass, as

his successors actually did. As to the rest, Leibnitz's

procedure is much more in accordance with the meth-

ods of science than Descartes's. Two things, however,

are confounded : the question of the measure of force
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in a sense, and the question of the constancy of the sums 2mv and

andTeib- 2m v 2
. The two have in reality nothing to do with

eacVdght. each other. With regard to the first question, we now

know that both the Cartesian and the Leibnitzian meas-

ure of force, or, rather, the measure of the effective-

ness of a body in motion, have, each in a different

sense, their justification. Neither measure, however,

as Leibnitz himself correctly remarked, is to be con-

founded with the common, Newtonian, measure of

force.

The dis- With regard to the second question, the later in-

suhV/miVvestigations of Newton really proved that iox free ma-

sundings. terial systems not acted on by external forces the Car-

tesian sum *2mv is a constant ; and the investigations

of Huygens showed that also the sum 2mv 2 is a con-

stant, provided work performed by forces does not alter

it. The dispute raised by Leibnitz rested, therefore,

on various misunderstandings. It lasted fifty-seven

years, till the appearance of D'Alembert's Traite de

dynaniique, in 1743. To the theological ideas of Des-

cartes and Leibnitz, we shall revert in another place.

Theappii- 5. The three equations above discussed, though

they are only applicable to rectilinear motions produced

by constant forces, may yet be considered the funda-

for
V
c

a
es.

able
mental equations of mechanics. If the motion be recti-

linear but the force variable, these equations pass by a

slight, almost self-evident, modification into others,

which we shall here only briefly indicate, since mathe-

matical developments in the present treatise are wholly

subsidiary.

From the first equation we get for variable forces

m v = (pdt + C, where p is the variable force, dt the

time-element of the action, \ pdt the sum of all the

cation of
the funda-
mental
equations
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products p . dt from the beginning to the end of the

action, and C a constant quantity denoting the value

of m v before the force begins to act. The second equa-

tion passes in like manner into the forms s=J dtj — dt

J\-Ct+ D, with two so-called constants of integration.

The third equation must be replaced by

Curvilinear motion may always be conceived as the

product of the simultaneous combination of three rec-

tilinear motions, best taken in three mutually perpen-

dicular directions. Also for the components of the mo-

tion of this very general case, the above-given equa-

tions retain their significance.

6 The mathematical processes of addition, sub- The units o!
r

. mechanics.

traction, and equating possess intelligible meaning only

when applied to quantities of the same kind. We can-

not add or equate masses and times, or masses and

velocities, but only masses and masses, and so on.

When, therefore, we have a mechanical equation, the

question immediately presents itself whether the mem-

bers of the equation are quantities of the same kind,

that is, whether they can be measured by the same unit,

or whether, as we usually say, the equation is homo-

geneous. The units of the quantities of mechanics will

form, therefore, the next subject of our investigations.

The choice of units, which are, as we know, quan-

tities of the same kind as those they serve to measure,

is in many cases arbitrary. Thus, an arbitrary mass is

employed as the unit of mass, an arbitrary length is

employed as the unit of length, an arbitrary time as the

unit of time. The mass and the length employed as

units can be preserved ; the time can be reproduced
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Arbitrary by pendulum-experiments and astronomical observa-
units, and . . .

derived or tions. But units like a unit of velocity, or a unit of

units. acceleration, cannot be preserved, and are much more
difficult to reproduce. These quantities are conse-

quently so connected with the arbitrary fundamental

units, mass, length, and time, that they can be easily

and at once derived from them. Units of this class

are called derived or absolute units. This latter desig-

nation is due to Gauss, who first derived the magnetic

units from the mechanical, and thus created the possi-

bility of a universal comparison of magnetic measure-

ments. The name, therefore, is of historical origin.

The de- As unit of velocity we might choose the velocity
rived units ........
of velocity, with which, say, q units of length are travelled over in

tion, and unit of time. But if we did this, we could not express

the relation between the time /, the distance s, and the

velocity v by the usual simple formula s = v /, but

should have to substitute for it s — q.vt. If, however,

we define the unit of velocity as the velocity with

which the unit of length is travelled over in unit of

time, we may retain the form s = vt. Among the de-

rived units the simplest possible relations are made
to obtain. Thus, as the unit of area and the unit of vol-

ume, the square and cube of the unit of length are al-

ways employed.

According to this, we assume then, that by unit ve-

locity unit length is described in unit time, that by unit

acceleration unit velocity is gained in unit time, that

by unit force unit acceleration is imparted to unit mass,

and so on.

The derived units depend on the arbitrary funda-

mental units ; they are functions of them. The func-

tion which corresponds to a given derived unit is called

its dimensions. The theory of dimensions was laid down
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by Fourier, in 1822, in his Theory of Heat. Thus, if /The theory

j 11 • 1 1 • °f dimen-
denote a length, / a time, and ;;/ a mass, the dimen- sions.

sions of a velocity, for instance, are /// or lt~ 1
. After

this explanation, the following table will be readily un-

derstood :

NAMES SYMBOLS DIMENSIONS

Velocity v If- 1

Acceleration cp tt~ 2

Force p mlt~2

Momentum ;;/7' ;;///
—1

Impulse pt mlt~~ x

Work ps ml 2 t~2

Vis viva - ?nl 2 t~~2

Moment of inertia f) ml 2

Statical moment D ml 2 t~ 2

This table shows at once that the above-discussed equa-

tions are homogeneous, that is, contain only members of

the same kind. Every new expression in mechanics

might be investigated in the same manner.

7. The knowledge of the dimensions of a quantity The usefui-

is also important for another reason. Namely, if the theory of
le

value of a quantity is known for one set of fundamental sions"

units and we wrish to pass to another set, the value of

the quantity in the new units can be easily found from

the dimensions. The dimensions of an acceleration,

wdiich has, say, the numerical value qj, are 1
1~ 2

. If

we pass to a unit of length A times greater and to a

unit of time r times greater, then a number X times

smaller must take the place of / in the expression //~ 2
,

and a number r times smaller the place of /. The
numerical value of the same acceleration referred to

the new units will consequently be (r 2 /A) cp. If we
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The Inter-
national
Bureau of
Weights
and Meas-
ures.

The inter-

national
unit of
length.

take the metre as our unit of length, and the second as

our unit of time, the acceleration of a falling body for

example is 9-81, or as it is customary to write it, in-

dicating at once the dimensions and the fundamental

measures: 9-81 (metre/second 2
). If we pass now to

the kilometre as our unit of length (X = 1000), and to

the minute as our unit of time (r = 60), the value of the

same acceleration of descent is (60 X 60/1000)9-81,

or 35-316 (kilometre/minute 2
).

[8. The following statement of the mechanical units

at present in use in the United States and Great Britain

is substituted for the statement by Professor Mach of

the units formerly in use on the continent of Europe.

All the civilised governments have united in establish-

ing an International Bureau of Weights and Measures

in the Pavilion de Breteuil, in the Pare of St. Cloud,

at Sevres, near Paris. In some countries, the stan-

dards emanating from this office are exclusively legal
;

in others, as the United States and Great Britain, they

are optional in contracts, and are usual with physi-

cists. These standards are a standard of length and a

standard of mass (not weight.)

The unit of length is the International Metre, which

is defined as the distance at the melting point of ice

between the centres of two lines engraved upon the

polished surface of a platiniridium bar, of a nearly

X-shaped section, called the International Prototype

Metre. Copies of this, called National Prototype Me-

tres, are distributed to the different governments. The

international metre is authoritatively declared to be

identical with the former French metre, used until the

adoption of the international standard ; and it is im-

possible to ascertain axiy error in this statement, be-
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cause of doubt as to the length of the old metre,

owing partly to the imperfections of the standard, and

partly to obstacles now intentionally put in the way of

such ascertainment. The French metre was defined

as the distance, at the melting-point of ice, between

the ends of a platinum bar, called the metre des archives.

It wTas against the law to touch the ends, which made

it difficult to ascertain the distance between them.

Nevertheless, there was a strong suspicion they had

been dented. The metre des archives was intended to

be one ten-millionth of a quadrant of a terrestrial

meridian. In point of fact such a quadrant is, ac-

cording to Clarke, 32814820 feet, which is 10002015

metres.

The international unit of mass is the kilogramme, The inter-

national

which is the mass of a certain cylinder of platiniridium unit of
mass.

called the International Prototype Kilogramme. Each

government has copies of it called National Prototype

Kilogrammes. This mass was intended to be identical

with the former French kilogramme, which was defined

as the mass of a certain platinum cylinder called the

kilogramme des archives. The platinum being somewhat

spongy contained a variable amount of occluded gases,

and had perhaps suffered some abrasion. The kilo-

gramme is 1000 grammes ; and a gramme was intended

to be the mass of a cubic centimetre of water at its

temperature of maximum density, about 3-93° C. It

is not known with a high degree of precision how nearly

this is so, owing to the difficulty of the determination.

The regular British unit of length is the Imperial The British

Yard which is the distance at 62 F. between the cen- length.

tres of two lines engraved on gold plugs inserted in a

bronze bar usually kept walled up in the Houses of

Parliament in Westminster. These lines are cut rela-
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Conditions tively deep, and the burr is rubbed off and the surface
of compari-

.

son of the rendered mat, by rubbing with charcoal. The centre

Yard with of such a line can easily be displaced by rubbing ; which

is probably not true of the lines on the Prototype me-

tres. The temperature is, by law, ascertained by a

mercurial thermometer ; but it was not known, at the

time of the construction of the standard, that such

thermometers may give quite different readings, ac-

cording to the mode of their manufacture. The quality

of glass makes considerable difference, and the mode
of determining the fixed points makes still more. The
best way of marking these points is first to expose the

thermometer for several hours to wet aqueous vapor at

a known pressure, and mark on its stem the height of

the column of mercury. The thermometer is then

brought down to the temperature of melting ice, as

rapidly as possible, and is immersed in pounded ice

which is melting and from which the water is not

allowed to drain off. The mercury being watched

with a magnifying glass is seen to fall, to come to

rest, and to commence to rise, owing to the lagging

contraction cf the glass. Its lowest point is marked

on the stem. The interval between the two marks is

then divided into equal degrees. When such a ther-

mometer is used, it is kept at the temperature to be

determined for as long a time as possible, and imme-

diately after is cooled as rapidly as it is safe to cool it,

and its zero is redetermined. Thermometers, so made
and treated, will give very constant indications. But

the thermometers made at the Kew observatory, which

are used for determining the temperature of the yard,

are otherwise constructed. Namely the melting-point

is determined first and the boiling-point afterwards
;

and the thermometers are exposed to both tempera-
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tures for many hours. The point which upon such a Relative
, ... , n ... hi -i lengths of
thermometer will appear as 62 will really be consider- the metre

ably hotter (perhaps a third of a centigrade degree)
'

than if its melting point were marked in the other way.

If this circumstance is not attended to in making com-

parisons, there is danger of getting the yard too short

by perhaps one two-hundred-thousandth part. General

Comstock finds the metre equal to 39*36985 inches.

Several less trustworthy determinations give nearly the

same value. This makes the inch 2 • 540014 centimetres.

At the time the United States separated from Eng- The Ameri-
can unit oi

land, no precise standard of length was legal*; and length.

none has ever been established. We are, therefore,

without any precise legal yard ; but the United States

office of weights and measures, in the absence of any

legal authorisation, refers standards to the British Im-

perial Yard.

The regular British unit of mass is the Pound, de- The British

fined as the mass of a certain platinum weight, called maSs.

the Imperial Pound. This was intended to be so con-

structed as to be equal to 7000 grains, each the 5760th

part of a former Imperial Troy pound. This would be

within 3 grains, perhaps closer, of the old avoirdupois

pound. The British pound has been determined by

Miller to be o • 4535926525 kilogramme ; that is the kilo-

gramme is 2-204621249 pounds.

At the time the United States separated from Great

Britain, there were two incommensurable units of

weight, the avoirdupois pound and the Troyfound. Con-

gress has since established a standard Troy pound,

which is kept in the Mint in Philadelphia. It was a

copy of the old Imperial Troy pound which had been

adopted in England after American independence. It

* The so-called standard of 1758 had not been legalised.
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TheAmeri- is a hollow brass weight of unknown volume ; and no
can unit of . . . . , , , , ,

mass. accurate comparisons of it with modern standards have

ever been published. Its mass is, therefore, unknown.

The mint ought by law to use this as the standard of

gold and silver. In fact, they use weights furnished

by the office of weights and measures, and no doubt

derived from the British unit; though the mint officers

profess to compare these with the Troy pound of the

United States, as well as they are able to do. The old

avoirdupois pound, which is legal for most purposes,

differed without much doubt quite appreciably from

the British Imperial pound ; but as the Office ofWeights

and Measures has long been, without warrant of law,

standardising pounds according to this latter, the legal

avoirdupois pound has nearly disappeared from use of

late years. The makers of weights could easily detect

the change of practice of the Washington Office.

Measures of capacity are not spoken of here, be-

cause they are not used in mechanics. It may, how-

ever, be well to mention that they are defined by the

weight of water at a given temperature which they

measure.

The unit of The universal unit of time is the mean solar day or
lme *

its one 86400th part, which is called a second. Side-

real time is only employed by astronomers for special

purposes.

Whether the International or the British units are

employed, there are two methods of measurement of

mechanical quantities, the absolute and the gravitational.

The absolute is so called because it is not relative to

the acceleration of gravity at any station. This method

was introduced by Gauss.

The special absolute system, widely used by physi-

cists in the United States and Great Britain, is called
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of the
United
States and
Great Brit-
ain.

the Centimetre-Gramme-Second system. In this sys- The abso-
lute system

tern, writing C for centimetre, G for gramme mass

and S for second,

the unit of length is C
the unit of mass is G
the unit of time is S

the unit of velocity is C/S

the unit of acceleration (which might

be called a "galileo," because Gali-

leo Galilei first measured an accele-

ration) is C/S 2

the unit of density is G/C 3

the unit of momentum is G C/S

the unit of force (called a dyne) is ... G C/S 2

the unit of pressure (called one mil-

lionth of an absolute atmosphere) is . . G/CS 2
;

the unit of energy (vis viva, or work,

called an erg) is |GC 2 /S 2
;

etc.

The gravitational system of measurement of me- The Gra-w-

chanical quantities, takes the kilogramme or pound, or system.

rather the attraction of these towards the earth, com-

pounded with the centrifugal force,—which is the ac-

celeration called gravity, and denoted by g, and is dif-

ferent at different places,—as the unit of force, and

the foot-pound or kilogramme-metre, being the amount

of gravitational energy transformed in the descent of a

pound through a foot or of a kilogramme through a

metre, as the unit of energy. Two ways of reconciling

these convenient units with the adherence to the usual

standard of length naturally suggest themselves, namely,

first, to use the pound weight or the kilogramme weight

divided by g as the unit of mass, and, second, to adopt
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such a unit of time as will make the acceleration of g,

at an initial station, unity. Thus, at Washington, the

acceleration of gravity is 980 • 05 galileos. If, then,

we take the centimetre as the unit of length, and the

0-031943 second as the unit of time, the acceleration

of gravity will be 1 centimetre for such unit of time

squared. The latter system would be for most pur-

poses the more convenient ; but the former is the more

familiar.

Compari- In either system, the formula f = mg is retained;
son of the ... . . ' , ,

i -i •

absolute but in the former^ retains its absolute value, while 111

and gravi-
l

. . . .
1

. T
tationai the latter it becomes unity for the initial station. In

Paris, g is 980-96 galileos ; in Washington it is 980*05

galileos. Adopting the more familiar system, and

taking Paris for the initial station, if the unit of force

is a kilogramme's weight, the unit of length a centi-

metre, and the unit of time a second, then the unit of

mass will be 1/981-0 kilogramme, and the unit of

energy will be a kilogramme-centimetre, or (1/2)-

(1000/981-0) G C 2 /S 2
. Then, at Washington the

gravity of a kilogramme will be, not 1, as at Paris,

but 980-1/981 -0= 0-99907 units or Paris kilogramme-

weights. Consequently, to produce a force of one Paris

kilogramme-weight we must allow Washington gravity

to act upon 981 -0/980-1 — 1 -00092 kilogrammes.]*

In mechanics, as in some other branches of physics

closely allied to it, our calculations involve but three

fundamental quantities, quantities of space, quantities

of time, and quantities of mass. This circumstance is

a source of simplification and power in the science

which should not be underestimated.

For some critical remarks on the preceding method of exposition, see

Nature, in the issue for November 15, 1894.
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in.

THE LAWS OF THE CONSERVATION OF MOMENTUM, OF THE
CONSERVATION OF THE CENTRE OF GRAVITY, AND

OF THE CONSERVATION OF AREAS.

i. Although Newton's principles are fully adequate Spedaiisa-

to deal with any mechanical problem that may arise, mechanical

it is yet convenient to contrive for cases more frequently

occurring, particular rules, which will enable us to treat

problems of this kind by routine forms and to dis-

pense with the minute discussion of them. Newton
and his successors developed several such principles.

Our first subject will be Newton's doctrines concern-

ing freely movable material systems.

2. If two free masses /// and ///'are subjected in Mutual ac-

the direction of their line of junction to the action of

forces that proceed from other masses, then, in the in-

terval of time /, the velocities v, v' will be generated,

and the equation (p -{- p') I = m v -j- m'v' will subsist.

This follows from the equations pt — mv and p'f =
m'v'. The sum mv -f- m'v' is called the momentum of

the system, and in its computation Oppositely directed

forces and velocities are regarded as having opposite

signs. If, now, the masses ///, ///' in addition to being

subjected to the action of the external forces /, /' are

also acted upon by internal forces, that is by such as

are mutually exerted by the masses on one another, these

forces will, by Newton's third law, be equal and op-

posite, q, — q. The sum of the impressed impulses

is, then, (p -f/ + q— q)t = (p + p')t, the same as

before ; and, consequently, also, the total momentum
of the system will be the same. The momentum of a

tion of free
masses.
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system is thus determined exclusively by external forces,

that is, by forces which masses outside of the system

exert on its parts.

Law of the Imagine a number of free masses ///, ni , m" . . . .

UoToTmo- distributed in any manner in space and acted on by
mentum.

extemal forces ^ y ?
p'\ . . . whose lines have any di-

rections. These forces produce in the masses in the

interval of time / the velocities v, v' , v" . . . . Resolve

all the forces in three directions x, y, z at right angles

to each other, and do the same with the velocities.

The sum of the impulses in the ^-direction will be equal

to the momentum generated in the ^-direction ;
and

so with the rest. If we imagine additionally in action

between the masses m, m' , m" . . . ., pairs of equal and

opposite internal forces^, — q, r, — r, s, — s, etc.,

these forces, resolved, will also give in every direction

pairs of equal and opposite components, and will con-

sequently have on the sum-total of the impulses no in-

fluence. Once more the momentum is exclusively de-

termined by external forces. The law which states

this fact is called the law of the conservation of momen-

tum.

Law of the 3. Another form of the same principle, which New-

tiSS
S

ofthe ton likewise discovered, is called the law of the conser-

vation of the centre ofgrav-
Centre of

Gravity.
2 m_-—^ ~ £ f- itv. Imagine in A and BDAS B t - &

(Fig. 149) two masses, 2 m
Fig - I49< and m

y
in mutual action,

say that of electrical repulsion ; their centre of gravity

is situated at S, where BS= 2AS. The accelerations

they impart to each other are oppositely directed and

in the inverse proportion of the masses. If, then, in

consequence of the mutual action, 2m describes a dis-

tance AD, m will necessarily describe a distance BC=
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2AD. The point 6* will still remain the position of the

centre of gravity, as CS == nDS. Therefore, two masses

cannot, by mutual action, displace their common centre

of gravity.

If our considerations involve several masses, dis- This law
applied to

tributed in any way in space, the same result will also systems of

be found to hold good for this case. For as no two of

the masses can displace their centre of gravity by mu-

tual action, the centre of gravity of the system as a

whole cannot be displaced by the mutual action of its

parts.

Imagine freely placed in space a system of masses

;;/, ///', m" . . . . acted on by external forces of any kind.

We refer the forces to a system of rectangular coordi-

nates and call the coordinates respectively x, y, z, x',

/, z, and so forth. The coordinates of the centre of

gravity are then

'Smx 2 my 2mz
2 m 2, m 2 m

in which expressions x, y, z may change either by uni-

form motion or by uniform acceleration or by any other

law, according as the mass in question is acted on by

no external force, by a constant external force, or by a

variable external force. The centre of gravity will have

in all these cases a different motion, and in the first

may even be at rest. If now internal forces, acting be-

tween every two masses, ///' and m" , come into play in

the system, opposite displacements w', w" will thereby

be produced in the direction of the lines of junction

of the masses, such that, allowing for signs, m'w' -\-

m"w" = 0. Also with respect to the components x
x

and x
2

of these displacements the equation mx
1

-\-

m"x
2
= will hold. The internal forces consequently
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produce in the expressions <?, ?/, <? only such additions

as mutually destroy each other. Consequently, the

motion of the centre ofgravity of a system is determined

by external forces only.

Acceiera- If we wish to know the acceleration of the centre of

centre of gravity of the system, the accelerations of the system's
gravity of a . ... .. , Tr , ,, j
system. parts must be similarly treated. It cp, cp , cp . . . . de-

note the accelerations of m, m' , m". ... in any direc-

tion, and cp the acceleration of the centre of gravity in

the same direction, cp = 2mcp/2m, or putting the

total mass 2m = M, cp = 2m cp/M. Accordingly, we

obtain the acceleration of the centre of gravity of a

system in any direction by taking the sum of all the

forces in that direction and dividing the result by the

total mass. The centre of gravity of a system moves

exactly as if all the masses and all the forces of the

system were concentrated at that centre. Just as a

single mass can acquire no acceleration without the

action of some external force, so the centre of gravity

of a system can acquire no acceleration without the

action of external forces.

4. A few examples may now be given in illustra-

tion of the principle of the conservation of the centre

of gravity.

Movement Imagine an animal free in space. If the animal

ma^ree'ln move in one direction a portion m of its mass, the re-

space
' mainder of it J^will be moved in the opposite direction,

always so that its centre of gravity retains its original

position. If the animal draw back the mass ;//, the

motion of M also will be reversed. The animal is un-

able, without external supports or forces, to move itself

from the spot which it occupies, or to alter motions im-

pressed upon it from without.

A lightly running vehicle A is placed on rails and
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loaded with stones. A man stationed in the vehicle of a ve-

. hide, from
casts out the stones one after another, in the same di- which

stones are

rection. The vehicle, supposing the friction to be suf- cast.

nciently slight, will at once be set in motion in the op-

posite direction. The centre of gravity of the system

as a whole (of the vehicle -\- the stones) will, so far as

its motion is not destroyed by external obstacles, con-

tinue to remain in its original spot. If the same man
were to pick up the stones from without and place

them in the vehicle, the vehicle in this case would also

be set in motion ; but not to the same extent as before,

as the following example will render evident.

A projectile of mass m is thrown with a velocity v Motion of a
cannon and

from a cannon of mass M. In the reaction, M also re- its projec-
tile,

ceives a velocity, V, such that, making allowance for

the signs, MV -\- mv = 0. This explains the so-called

recoil. The relation here is V= — (m/M)v; or, for

equal velocities of flight, the recoil is less according as

the mass of the cannon is greater than the mass of the

projectile. If the work done by the powder be expressed

by A, the vires vivce will be determined by the equation

MV2 /2 -f- mv 2 /2 = A ; and, the sum of the momenta
being by the first-cited equation = 0, we readily obtain

V= V ^A mIM{M -\- 111). Consequently, neglecting

the mass of the exploded powder, the recoil vanishes

when the mass of the projectile vanishes. If the mass

m were not expelled from the cannon but sucked into

it, the recoil would take place in the opposite direc-

tion. But it would have no time to make itself visible

since before any perceptible distance had been trav-

ersed, /// would have reached the bottom of the bore.

As soon, however, as M and /;/ are in rigid connection

with each other, as soon, that is, as they are relatively

at rest to each other, they must be absolutely at rest,
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for the centre of gravity of the system as a whole has

no motion. For the same reason no considerable mo-

tion can take place when the stones in the preceding

example are taken into the vehicle, because on the

establishment of rigid connections between the vehicle

and the stones the opposite momenta generated are

destroyed. A cannon sucking in a projectile would

experience a perceptible recoil only if the sucked in

projectile could fly through it.

qsciiia- Imagine a locomotive freely suspended in the air,

body of a
he

or, what will subserve the same purpose, at rest with
locomotive.

insufficient friction on the rails. By the law of the

conservation of the centre of gravity, as soon as the

heavy masses of iron in connection with the piston-

rods begin to oscillate, the body of the locomotive will

be set in oscillation in a contrary direction—a motion

which may greatly disturb its uniform progress. To

eliminate this oscillation, the motion of the masses of

iron worked by the piston-rods must be so compensated

for by the contrary motion of other masses that the

centre of gravity of the system as a whole will remain

in one position. In this way no motion of the body of

the locomotive will take place. This is done by affix-

ing masses of iron to the driving-wheels.

illustration The facts of this case may be very prettily shown
of the last ^ page

'

s electromotor (Fig. 150). When the iron

core in the bobbinAB is projected by the internal forces

acting between bobbin and core to the right, the body

of the motor, supposing it to rest on lightly movable

wheels rr, will move to the left. But if to a spoke of

the fly-wheel R we affix an appropriate balance-weight

a, which always moves in the contrary direction to the

iron core, the sideward movement of the body of the

motor may be made totally to vanish.

case
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Of the motion of the fragments of a bursting bomb ^bursting

we know nothing. But it is plain, by the law of the

conservation of the centre of gravity, that, making al-

lowance for the resistance of the air and the obstacles

the individual parts may meet, the centre of gravity of

the system will continue after the bursting to describe

the parabolic path of its original projection.

5. A law closely allied to the law of the centre of Lawoftk

gravity, and similarly applicable to free systems, is thetjonof

principle of the conservation of areas. Although Newton

Fig. 150.

had, so to say, this principle within his very grasp, it

was nevertheless not enunciated until a long time after-

wards by Euler, D'Arcy, and Daniel Bernoulli.

Euler and Daniel Bernoulli discovered the law almost

simultaneously (1746), on the occasion of treating a

problem proposed by Euler concerning the motion of

balls in rotatable tubes, being led to it by the consider-

ation of the action and reaction of the balls and the

tubes. D'Arcy (1747) started from Newton's investiga-

tions, and generalised the law of sectors which the

latter had employed to explain Kepler's laws.
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Deduction
of the law.

Two masses m, m' (Fig. 151) are in mutual action.

By virtue of this action the masses describe the dis-

tances AB, CD in the direction of their line of junction.

Allowing for the signs, then, m . AB -f ///'. CD = 0.

Drawing radii vectores to the moving masses from any

point O, and regarding

the areas described in

opposite senses by the

radii as having opposite

signs, we further obtain

m. OAB + m\OCD = Q.

Which is to say, if two

masses mutually act on

each other, and radii vec-

tores be drawn to these

masses from any point,

the sum of the areas

described by the radii

multiplied by the respec-

tive masses is = 0. If the masses are also acted on

by external forces and as the effect of these the areas

OAE and OCE are described, the joint action of the

internal and external forces, during any very small

period of time, will produce the areas OAG and OCII.

But it follows from Varignon's theorem that

mOAG+ m'OCH= m OAE + m'OCF-\-
mOAB + m'OCD = mOAE + m'OCE;

in other words, the sum of the products of the areas so de-

scribed into the respective masses which compose a system

is unaltered by the action of internalforces.

If we have several masses, the same thing may be

asserted, for every two masses, of the projection on any

given plane of the motion. If we draw radii from
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any point to the several masses, and project on any

plane the areas the radii describe, the sum of the

products of these areas into the respective masses will

be independent of the action of internal forces. This

is the law of the conservation of areas.

If a single mass not acted on by forces is moving interpreta-

• r 1 r i • -it 1 1
tion of the

unilormly forward in a straight line and we draw a law.

radius vector to the mass from any point O, the area

described by the radius increases proportionally to the

time. The same law holds for 2mf in cases in which

several masses not acted on by forces are moving,

where we signify by the summation the algebraic sum
of all the products of the areas (/) into the moving
masses—a sum which we shall hereafter briefly refer

to as the sum of the mass-areas. If internal forces

come into play between the masses of the system, this

relation will remain unaltered. It will still subsist,

also, if external forces be applied whose lines of action

pass through the fixed point 0, as we know from the

researches of Newton.

If the mass be acted on by an external force, the

area f described by its radius vector will increase in

time by the law/= at 2
12 -f- bt -\- c, where a depends

on the accelerative force, b on the initial velocity, and

c on the initial position. The sum 2mf increases by
the same law, where several masses are acted upon by
external accelerative forces, provided these may be re-

garded as constant, which for sufficiently small inter-

vals of time is always the case. The law of areas in

this case states that the internal forces of the system

have no influence on the increase of the sum of the mass-

areas.

A free rigid body may be regarded as a system

whose parts are maintained in their relative positions
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uniform ro- by internal forces. The law of areas is applicable there-

f?ee°rig/d
a

fore to this case also. A simple instance is afforded
body "

by the uniform rotation of a rigid body about an axis

passing through its centre of gravity. If we call m a

portion of its mass, r the distance of the portion from

the axis, and a its angular velocity, the sum of the

mass-areas produced in unit of time will be 2 m

(r/2) ra = {a/2) 2mr 2
, or, the product of the moment

of inertia of the system into half its angular velocity.

This product can be altered only by external forces.

illustrative 6. A few examples may now be cited in illustration

examples.
of the law>

If two rigid bodies K and K' are connected, and K
is brought by the action of internal forces into rotation

relatively to K\ immediately K' also will be set in ro-

tation, in the opposite direction. The rotation of K
generates a sum of mass-areas which, by the law, must

be compensated for by the production of an equal, but

opposite, sum by K'

.

opposite This is very prettily exhibited by the electromotor

flywheel' of Fig. 152. The fly-wheel of the motor is placed in

rire
b
e°e1ec-

f

a horizontal plane, and the motor thus attached to a

vertical axis, on which it can freely turn. The wires

conducting the current dip, in order to prevent their

interference with the rotation, into two conaxial gutters

of mercury fixed on the axis. The body of the motor

(iT) is tied by a thread to the stand supporting the

axis and the current is turned on. As soon as the fly-

wheel (X), viewed from above, begins to rotate in the

direction of the hands of a watch, the string is drawn

taut and the body of the motor exhibits the tendency

to rotate in the opposite direction—a rotation which im-

mediately takes place when the thread is burnt away.

The motor is, with respect to rotation about its

tro-motor.
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axis, a free system. The sum of the mass-areas gen- itsexpiana-
7 J tion by the

erated, for the case of rest, is = 0. But the wheel of law.

the motor being set in rotation by the action of the in-

ternal electro-magnetic forces, a sum of mass-areas is

produced which, as the total sum must remain = 0, is

compensated for by the rotation in the opposite direc-

tion of the body of the motor. If an index be attached

to the body of the motor and kept in a fixed position
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by an elastic spring, the rotation of the body of the

motor cannot take place. Yet every acceleration of

the wheel in the direction of the hands of a watch (pro-

duced by a deeper immersion of the battery) causes

the index to swerve in the opposite direction, and every

retardation produces the contrary effect,

a variation A beautiful but curious phenomenon presents itself

phenome™
6 when the current to the motor is interrupted. Wheel

non ' and motor continue at first their movements in oppo-

site directions. But the effect of the friction of the

axes soon becomes apparent and the parts gradually

assume with respect to each other relative rest. The

motion of the body of the motor is seen to diminish
;

for a moment it ceases ; and, finally, when the state of

relative rest is reached, it is reversed and assumes the

direction of the original motion of the wheel. The

whole motor now rotates in the direction the wheel did

at the start. The explanation of the phenomenon is

obvious. The motor is not a perfectly free system. It

is impeded by the friction of the axes. In a perfectly

free system the sum of the mass-areas, the moment

the parts re-entered the state of relative rest, would

again necessarily be — 0. But in the present instance,

an external force is introduced—the friction of the

axes. The friction on the axis of the wheel diminishes

the mass-areas generated by the wheel and body of

the motor alike. But the friction on the axis of the

body of the motor only diminishes the sum of the mass-

areas generated by the body. The wheel retains, thus,

an excess of mass-area, which when the parts are rela-

tively at rest is rendered apparent in the motion of the

entire motor. The phenomenon subsequent to the in-

terruption of the current supplies us with a model of

what according to the hypothesis of astronomers has
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taken place on the moon. The tidal wave created by itsiiiustra-

the earth has reduced to such an extent by friction the case of the

velocity of rotation of the moon that the lunar day has

grown to a month. The fly-wheel represents the fluid

mass moved by the tide.

Another example of this law is furnished by rcac- Reaction-

tion-whcels. If air or gas be emitted from the wheel

(Fig. 153 #) in the direction of the short arrows, the

whole wheel will be set in rotation in the direction of

the large arrow. In Fig. 153^, another simple reac-

tion-wheel is represented. A brass tube rr plugged at

both ends and appropriately perforated, is placed on a

second brass tube J?, supplied with a thin steel pivot

through which air can be blown ; the air escapes at

the apertures O, O f

.

It might be supposed that sucking on the reaction- Variation
.. , 1 j 1 1 • • of tne P lle *

wTheels would produce the opposite motion .to that re-nomenaof
1 • r ii- xr-i'i reaction-

Suiting from blowing. Yet this does not usually take wheels.

place, and the reason is obvious. The air that is

sucked into the spokes of the wheel must take part

immediately in the motion of the wheel, must enter

the condition of relative rest with respect to the wheel

;

and when the system is completely at rest, the sum of

its mass-areas must be = 0. Generally, no perceptible

rotation takes place on the sucking in of the air. The
circumstances are similar to those of the recoil of a

cannon which sucks in a projectile. If, therefore, an

elastic ball, which has but one escape-tube, be attached

to the reaction-wheel, in the manner represented in

Fig. 153 <?, and be alternately squeezed so that the

same quantity of air is by turns blown out and sucked

in, the wheel will continue rapidly to revolve in the

same direction as it did in the case in which we blew

into it. This is partly due to the fact that the air



300 THE SCIENCE 0E MECHANICS.

Fig. 153 b.
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sucked into the spokes must participate in the motion Expiana-
1 r r

tlon of the

of the latter and therefore can produce no reactional variations,

rotation, but it also partly results from the difference

of the motion which the air outside the tube assumes

in the two cases. In blowing, the air flows out in jets,

and performs rotations. In sucking, the air comes in

from all sides, and has no distinct rotation.

The correctness of this view is easily demonstrated.

If we perforate the bottom of a hollow cylinder, a closed

band-box for instance, and

place the cylinder on the steel

pivot of the tube i?, after the

side has been slit and bent in

the manner indicated in Fig.

154, the box will turn in the

direction of the long arrow

when blown into and in the Fig. 154.

direction of the short arrow when sucked on. The air,

here, on entering the cylinder, can continue its rotation

unimpeded, and this motion is accordingly compensated

for by a rotation in the opposite direction.

7. The following case also exhibits similar condi- Reaction-
' ° ... tubes.

tions. Imagine a tube (Fig. 1550) which, running

straight from a to b, turns at right angles

to itself at the latter point, passes to c,

describes the circle cdef, whose plane

is at right angles to ab, and whose cen-

tre is at by then proceeds from / to g,

and, finally, continuing the straight line

ab, runs from g to //. The entire tube

is free to turn on an axis a A. If we

pour into this tube, in the manner in-

dicated in Fig. 155^, a liquid, which flows in the di-

rection cdef, the tube will immediately begin to turn

h

Fig. 155 a.
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in the direction fedc. This impulse, however, ceases,

the moment the liquid reaches the point f, and flowing

out into the radius/^- is obliged to join in the motion

of the latter. By the use of a constant stream of liquid,

therefore, the rotation

of the tube may soon

be stopped. But if the

stream be interrupted,

the fluid, in flowing off

through the radius fg,

will impart to the tube

a motional impulse in

the direction of its own
motion, cdef, and the

tube will turn in this di-

rection. All these phe-

nomena are easily ex-

plained by the law of

areas.

The trade-winds, the

deviation of the oceanic

currents and of rivers,

Foucault's pendulum

experiment, and the

like, may also be treated
Fi £- J 55 b - as examples of the law

Additional of areas. Another pretty illustration is afforded by

lions™" bodies with variable moments of inertia. Let a body

with the moment of inertia rotate with the angular

velocity a and, during the motion, let its moment

of inertia be transformed by internal forces, say by

springs, into ©', a will then pass into a', where a &=
a'Q', that is a' = a (©/&). On any considerable dimi-

nution of the moment of inertia, a great increase of
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angular velocity ensues. The principle might con-

ceivably be employed, instead of Foucault's method,

to demonstrate the rotation of the earth, [in fact, some
attempts at this have been made, with no very marked
success].

A phenomenon which substantially embodies the Rotating

3 • • 1 1 • i r 11 • A-i liquid in a
conditions last suggested is the following. A glass funnel,

funnel, with its axis placed in a vertical position, is

rapidly filled with a liquid in such a manner that the

stream does not enter in the direction of the axis but

strikes the sides. A slow rotatory motion is thereby

set up in the liquid which as long as the funnel is full, is

not noticed. But when the fluid retreats into the neck

of the funnel, its moment of inertia is so diminished

and its angular velocity so increased that a violent

eddy with considerable axial depression is created.

Frequently the entire effluent jet is penetrated by an

axial thread of air.

8. If we carefully examine the principles of the Both prin-

iiii« ciples are
centre of gravitv and of the areas, we shall discover in simply spe-

cial casesof
the law of
action and

both simply convenient

modes of expression, for

practical purposes, of

a well-known property

of mechanical phenom-

ena. To the accelera-

tion cp of one mass m Flg
-
I56,

there always corresponds a contrary acceleration cp' of

a second mass ///', where allowing for the signs m cp -f-

///' qj — 0. To the force ;;/ cp corresponds the equal

and opposite force m'cp'. When any masses m and

2 m describe with the contrary accelerations 2 cp and cp

the distances iw and w (Fig. 156), the position of

their centre of gravity S remains unchanged, and the
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sum of their mass-areas with respect to any point

is, allowing for the signs, 2/// ./+/«. 2/= 0. This

simple exposition shows us, that the principle of the

centre of gravity expresses the same thing with respect

to parallel coordinates that the principle of areas ex-

presses with respect to polar coordinates. Both contain

simply the fact of reaction.

But they The principles in question admit of still another

Son
y
s?rued

be
simple construction. Just as a single body cannot,

satfons of' without the influence of external forces, that is, without

inenia!
° f

the aid of a second body, alter its uniform motion of

progression or rotation, so also a system of bodies can-

not, without the aid of a second system, on which it

can, so to speak, brace and support itself, alter what

may properly and briefly be called its mean velocity of

progression or rotation. Both principles contain, thus,

a generalised statement of the law of inertia, the correct-

ness of which in the present form we not only see but

feel.

importance This feeling is not unscientific; much less is it

sdnctlve detrimental. Where it does not replace conceptual in-

^cLnkai sight but exists by the side of it, it is really the funda-

facts "

mental requisite and sole evidence of a complete mastery

of mechanical facts. We are ourselves a fragment of

mechanics, and this fact profoundly modifies our mental

life.* No one will convince us that the consideration

of mechanico-physiological processes, and of the feel-

ings and instincts here involved, must be excluded from

scientific mechanics. If we know principles like those

of the centre of gravity and of areas only in their ab-

stract mathematical form, without having dealt with the

palpable simple facts, which are at once their applica-

* For the development of this view, see E. Mach, Grundlinien der Lehre

den Bewegungsempfindungen. (Leipsic : Engelmann, 1875.)von
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tion and their source, we only half comprehend them,

and shall scarcely recognise actual phenomena as ex-

amples of the theory. We are in a position like that

of a person who is suddenly placed on a high tower

but has not previously travelled in the district round

about, and who therefore does not know how to inter-

pret the objects he sees.

THE LAWS OF IMPACT.

i. The laws of impact were the occasion of the Historical
x

_ m
position of

enunciation of the most important principles of me- the Laws of
r r r Impact.

chanics, and furnished also the first examples of the

application of such principles. As early as 1639, a

contemporary of Galileo, the Prague professor, Marcus

Marci (born in 1595), published in his treatise De Pro-

portione Motus (Prague) a few results of his investiga-

tions on impact. He knew that a body striking in

elastic percussion another of the same size at rest, loses

its own motion and communicates an equal quantity

to the other. He also enunciates, though not always

with the requisite precision, and frequently mingled

with what is false, other propositions which still hold

good. Marcus Marci was a remarkable man. He pos-

sessed for his time very creditable conceptions regard-

ing the composition of motions and "impulses." In

the formation of these ideas he pursued a method sim-

ilar to that which Roberval later employed. He speaks

of partially equal and opposite motions, and of wholly

opposite motions, gives parallelogram constructions,

and the like, but is unable, although he speaks of an

accelerated motion of descent, to reach perfect clear-

ness with regard to the idea of force and consequently

also with regard to the composition of forces. In spite
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There- of this, however, he discovers Galileo's theorem re-

Marcus
8 ° f

garding the descent of bodies in the chords of circles,

Marci.

IOANNES MARCOS MARCI PHIL: O MEDIC: DOCTOR
etProfeffir natus Lan&cronce Hermundurerumm Boem*

also a few propositions relating to the motion of the

pendulum, and has knowledge of centrifugal force and

so on. Although Galileo's Discourses had appeared a
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year previously, we cannot, in view of the condition of

things produced in Central Europe by the Thirty Years'

War, assume that Marci was acquainted with them.

Not only would the many errors in Marci's book thus

be rendered unintelligible, but it would also have to
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Thesourcesbe explained how Marci, as late as 1648, in a continu-

knowiedge. ation of his treatise, could have found it necessary to

defend the theorem of the chords of circles against the

Jesuit Balthasar Conradus. An imperfect oral com-

munication of Galileo's researches is the more reason-

able conjecture.* When we add to all this that Marci

was on the very verge of anticipating Newton in the

discovery of the compDsition of light, we shall recog-

nise in him a man of very considerable parts. His

writings are a worthy and as yet but slightly noticed

object of research for the historian of physics. Though

Galileo, as the clearest-minded and most able of his

contemporaries, boie away in this province the palm,

we nevertheless see from writings of this class that he

was not by any means alone in his thought and ways

of thinking.

There- 2. Galili o himself made several experimental at-

Galileo.
8
°

f

tempts to ascertain the laws of impact ; but he was not

in these endeavors wholly successful. He principally

busied himself with the force of a body in motion, or

with the "force of percussion," as he expressed it,

and endeavored to compare this force with the pressure

of a weight at rest, hoping thus to measure it. To this

end he instituted an extremely ingenious experiment,

which we shall now describe.

A vessel I (Fig. 157) in whose base is a plugged

orifice, is filled with water, and a second vessel II is

hung beneath it by strings ; the whole is fastened to

the beam of an equilibrated balance. If the plug is

removed from the orifice of vessel I, the fluid will fall

* I have been convinced, since the publication of the first edition of this

work, (see E. Wohlwill's researches, Die Entdeckung des Bcharrungsgesetzec,

in the Zeitschriftft" Vidkerpsychologie, 1884, XV, page 387,) that Marcus Marci

derived his information concerning the motion of falling bodies, from Galileo'*

earlier Dialogues. He may also have known the works of Benedetti.
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in a jet into vessel II. A portion of the pressure due Galileo's

to the resting weight of the water in I is lost and re- ment.

placed by an action of impact on vessel II. Galileo

expected a depression of the whole scale, by which he

hoped with the assistance of a counter-weight to de-

termine the effect of the impact. He was to some ex-

tent surprised to obtain no depression, and he was un-

able, it appears, perfectly to clear up the matter in his

mind.

3. To-day, of course, the explanation is not diffi-

cult. By the removal of the plug there is produced,

i

Fig- 157-

first a diminution of the pressure. This consists of Expiana-
' tion of the

two factors : (1) The weight of the jet suspended in exP <

the air is lost ; and (2) A reaction-pressure upwards is

exerted by the effluent jet on vessel I (which acts like

a Segner's wheel). Then there is an increase of pres-

sure (Factor 3) produced by the action of the jet on the

bottom of vessel II. Before the first drop has reached

the bottom of II, we have only to deal with a diminu-

tion of pressure, which, when the apparatus is in full

operation, is immediately compensated for. This initial

en-
ment,
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pfetermina- depression was, in fact, all that Galileo could observe.
tion of the

factor
a

s

n
^

al US *ma£*ne t^ie apparatus in operation, and denote
voived. the height the fluid reaches in vessel I by //, the corre-

sponding velocity of efflux by v, the distance of the

bottom of I from the surface of the fluid in II by k, the

velocity of the jet at this surface by w, the area of the

basal orifice by a, the acceleration of gravity by g, and
the specific gravity of the fluid by s. To determine
Factor (i) we may observe that v is the velocity ac-

quired in descent through the distance h. We have,

then, simply to picture to ourselves this motion of de-

scent continued through k. The time of descent of

the jet from I to II is therefore the time of descent

through // -f- k less the time of descent through //.

During this time a cylinder of base a is discharged

with the velocity v. Factor (i), or the weight of the

jet suspended in the air, accordingly amounts to

l/2 W*

To determine Factor (2) we employ the familiar

equation mv = pt. If we put / = 1, then mv — p, that

is the pressure of reaction upwards on I is equal to the

momentum imparted to the fluid jet in unit of time.

We will select here the unit of weight as our unit of

force, that is, use gravitation measure. We obtain for

Factor (2) the expression [av(s/gy\v = p, (where the

expression in brackets denotes the mass which flows

out in unit of time,) or

a}/2j7i . -^ • V^gJi =2 ah s.

Similarly we find the pressure on II to be

s \w = q> of factor 3 :
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s Mathemat-

a -- V'lgh V2g(/i + k). ical devel

The total variation of the pressure is accordingly

opment of
the result.

— VZg/i f-*±z-^]..
— lahs

+ ?ll/2gAi/2g(A + k)

or, abridged,

— 2as[\//i(h + &) — /i] — 2ahs

+ 2as\/J(F+/:y
9

—which three factors completely destroy each other. In

the very necessity of the case, therefore, Galileo could

only have obtained a negative result.

We must supply a brief comment respecting Fac- a comment
suggested

tor (2). It might be supposed that the pressure on the by the ex-

basal orifice which is lost, is a /is and not 2 a /is. But

this statical conception would be totally inadmissible

in the present, dynamical case. The velocity v is not

generated by gravity instantaneously in the effluent

particles, but is the outcome of the mutual pressure

between the particles flowing out and the particles left

behind ; and pressure can only be determined by the

momentum generated. The erroneous introduction of

the value a /is would at once betray itself by self-con-

tradictions.

If Galileo's mode of experimentation had been less

elegant, he would have determined without much diffi-

culty the pressure which a continuous fluid jet exerts.

But he could never, as he soon became convinced,

have counteracted by a pressure the effect of an instan-

taneous impact. Take—and this is the supposition of



Galileo's
reasoning.

Compari-
son of the
ideas im-
pact and
pressure.
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Galileo—a freely falling, heavy body. Its final veloc-

ity, we know, increases proportionately to the time.

The very smallest velocity requires a definite portion

of time to be produced in (a principle which even Mari-

otte contested). If we picture to ourselves a body

moving vertically upwards with a definite velocity, the

body will, according to the amount of this velocity,

ascend a definite time, and consequently also a definite

distance. The heaviest imaginable body impressed

in the vertical upward direction with the smallest im-

aginable velocity will ascend, be it only a little, in

opposition to the force of gravity. If, therefore, a

heavy body, be it ever so heavy, receive an instan-

taneous upward impact from a body in motion, be the

mass and velocity of that body ever so small, and such

impact impart to the heavier body the smallest imagin-

able velocity, that body will, nevertheless, yield and

move somewhat in the upward direction. The slightest

impact, therefore, is able to overcome the greatest pres-

sure ; or, as Galileo says, the force of percussion com-

pared with the force of pressure is infinitely great. This

result, which is sometimes attributed to intellectual ob-

scurity on Galileo's part, is, on the contrary, a bril-

liant proof of his intellectual acumen. We should say

to-day, that the force of percussion, the momentum,

the impulse, the quantity of motion mv, is a quantity

of different dimensions from the pressure /. The dimen-

sions of the former are m lt~^, those of the latter ;;/
//~ 2

.

In reality, therefore, pressure is related to momentum

of impact as a line is to a surface. Pressure is p, the

momentum of impact is//. Without employing mathe-

matical terminology it is hardly possible to express the

fact better than Galileo did. We now also see why it

is possible to measure the impact of a continuous fluid
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jet by a pressure. We compare the momentum de-

stroyed per second of time with the pressure acting

per second of time, that is, homogeneous quantities of

the form p t.

a. The first systematic treatment of the laws ofThesyste-
' J matic treat-

impact was evoked in the year 1668 by a request of the mem of the
* J

.
laws of 1 in-

Royal Society of London. Three eminent physicists pact.

Wallis (Nov. 26, 1668), Wren (Dec. 17, 1668), and

Huygens (Jan. 4, 1669) complied with the invitation of

the society, and communicated to it papers in which,

independently of each other, they stated, without de-

ductions, the laws of impact. Wallis treated only of

the impact of inelastic bodies, Wren and Huygens only

of the impact of elastic bodies. Wren, previously to

publication, had tested by experiments his theorems,

which, in the main, agreed with those of Huygens.

These are the experiments to which Newton refers in

the Principia. The same experiments were, soon after

this, also described, in a more developed form, by Ma-

riotte, in a special treatise, Sur le Owe des Corps. Ma-

riotte also gave the apparatus now known in physical

collections as the percussion-machine.

According to Wallis, the decisive factor in impact waiiis'sre-
7

\ suits.

is momentum, or the product of the mass (Jondt/s) into

the velocity (eeleritas). By this momentum the force

of percussion is determined. If two inelastic bodies

which have equal momenta strike each other, rest will

ensue after impact. If their momenta are unequal,

the difference of the momenta will be the momentum
after impact. If we divide this momentum by the sum

of the masses, we shall obtain the velocity of the mo-

tion after the impact. Wallis subsequently presented

his theory of impact in another treatise, Mcchanica sive

de Motu, London, 1671. All his theorems may be
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brought together in the formula now in common use,

u = {inv -f- m'v')/(m -f- ;//), in which ///, m denote the

masses, v, v the velocities before impact, and u the

velocity after impact.

Huygens's 5. The ideas which led Huygens to his results, are

and results, to be found in a posthumous treatise of his, De Motu

Corporum ex Percussione, 1703. We shall examine these

in some detail. The assumptions from which Huygens

O
V V

Fig. 158.

O O

Fig- 159.

An Illustration from De Percussione (Huygens).

proceeds are : (i) the law of inertia
; (2) that elastic

bodies of equal mass, colliding with equal and oppo-

site velocities, separate after impact with the same ve-

locities
; (3) that all velocities are relatively estimated

;

(4) that a larger body striking a smaller one at rest

imparts to the latter velocity, and loses a part of its

own ; and finally (5) that when one of the colliding

bodies preserves its velocity, this also is the case with

the other.
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Huygens, now, imagines two equal elastic masses, First, equal

which meet with equal and opposite velocities v. After masses ex-

the impact they rebound from each other with exactly locitiec

the same velocities. Huygens is right in assuming and

not deducing this. That elastic bodies exist which re-

cover their form after impact, that in such a transac-

tion no perceptible vis viva is lost, are facts which ex-

perience alone can teach us. Huygens, now, conceives

the occurrence just described, to take place on a boat

which is moving with the velocity v. For the specta-

tor in the boat the previous case still subsists ; but for

the spectator on the shore the velocities of the spheres

before impact are respectively 2 v and 0, and after im-

pact and 2 v. An elastic body, therefore, impinging

on another of equal mass at rest, communicates to the

latter its entire velocity and remains after the impact

itself at rest. If we suppose the boat affected with any

imaginable velocity, u, then for the spectator on the

shore the velocities before impact will be respectively

u -\- v and u — v, and after impact u — v and u -f v.

But since u -\- v and u— v may have any values what-

soever, it may be asserted as a principle that equal

elastic masses exchange in impact their velocities.

A body at rest, however great, is set in motion Second, the
relative ve-

by a body which strikes it, however small; as Ga- locityof ap-
- proach and

lileo pointed out. Huygens, now, recession isill c !\/f
tne same -

shows, that the approach of the « J*l

bodies before impact and their >-^ \^J
recession after impact take place °

with the same relative velocity. A Flg * l6a

body in impinges on a body of massM at rest, to which

it imparts in impact the velocity, as yet undetermined,

w. Huygens, in the demonstration of this proposition,

supposes that the event takes place on a boat moving
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from M towards m with the velocity w/2. The initial

velocities are, then, v — w/2 and — w/2 ; and the final

velocities, x and -f- w/2. But as M has not altered

the value, but only the sign, of its velocity, so ///, if a

loss of vis viva is not to be sustained in elastic impact,

can only alter the sign of its velocity. Hence, the final

velocities are — (y — w/2) and -f w/2. As a fact,

then, the relative velocity of approach before impact

is equal to the relative velocity of separation after im-

pact. Whatever change of velocity a body may suffer,

in every case, we can, by the fiction of a boat in mo-

tion, and apart from the algebraical signs, keep the

value of the velocity the same before and after impact.

The proposition holds, therefore, generally.

Third,if the If two masses M and m collide, with velocities V

of L°p
C
pro

e

a
S

ch and v inversely proportional to the masses, M after im-

fyprSpor-
6
" pact will rebound with the velocity V and //* with the

tional
s°so

e
velocity v. Let us suppose that the velocities after

fs

V
oT impact are V

x
and v

t
; then by the preceding proposi-

tion we must have V -\- v = V
x + v

t
, and by the prin-

ciple of vis viva

MV 2 m v 2
__MVX

2 m v
Y
2

"~2 h ~2~ "" ~"2 h ~2~'

Let us assume, now, that v
t
— v -{- w ; then, neces-

sarily, V
x
= V— w ; but on this supposition

2 '2 2 ' 2 '

v J 2

And this equality can, in the conditions of the case,

only subsist if w = ; wherewith the proposition above

stated is established.

Huygens demonstrates this by a comparison, con-

structively reached, of the possible heights of ascent

of the bodies prior and subsequently to impact. If

masses
are the ve-

locities
recession,
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the velocities of the impinging bodies are not inversely This propo-
sition, by

proportional to the masses, they may be made such by the fiction

. rTA1 . . of a moving
the fiction of a boat in motion. The proposition thus boat, made

to apply to

includes all imaginable cases. ail cases.

The conservation of vis viva in impact is asserted

by Huygens in one of his last theorems (11), which he

subsequently also handed in to the London Society.

But the principle is unmistakably at the foundation of

the previous theorems.

6. In taking up the study of any event or phenom- Typical
r J J x modes of

enon A, we may acquire a knowledge of its component natural in-
J x

.
qiury.

elements by approaching it from the point of view of a

different phenomenon B, which we already know ; in

which case our investigation of A will appear as the

application of principles before familiar to us. Or, we

may begin our investigation with A itself, and, as na-

ture is throughout uniform, reach the same principles

originally in the contemplation of A. The investiga-

tion of the phenomena of impact was pursued simul-

taneously with that of various other mechanical pro-

cesses, and both modes of analysis were really pre-

sented to the inquirer.

To begin with, we may convince ourselves that the impact in
J

t
the New-

problems of impact can be disposed of by the New- toman

tonian principles, with the help of only a minimum of vi<

new experiences. The investigation of the laws of im-

pact contributed, it is true, to the discovery of New-

ton's laws, but the latter do not rest solely on this foun-

dation. The requisite new experiences, not contained

in the Newtonian principles, are simply the informa-

tion that there are elastic and inelastic bodies. Inelastic

bodies subjected to pressure alter their form without

recovering it ; elastic bodies possess for all their forms

definite systems of pressures, so that every alteration

view.
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of form is associated with an alteration of pressure, and

vice versa. Elastic bodies recover their form ; and the

forces that induce the form-alterations of bodies do not

come into play until the bodies are in contact.

First, in- Let us consider two inelastic massesM and m mov-

masses. ing respectively with the velocities Fand v. If these

masses come in contact while possessed of these un-

equal velocities, internal form-altering forces will be

set up in the system M, m. These forces do not alter

the quantity of motion of the system, neither do they

displace its centre of gravity. With the restitution of

equal velocities, the form-alterations cease and in in-

elastic bodies the forces which produce the alterations

vanish. Calling the common velocity of motion after

impact //, it follows that Mu + mu = MF+ Mv, or

u = {MV-\- mz>)/(M+ ;//), the rule of Wallis.

impact in Now let us assume that we are investigating the

phenomena of impact without a previous knowledge of

Newton's principles. We very soon discover, when

we so proceed, that velocity is not the sole determina-

tive factor of impact; still another physical quality is

decisive—weight, load, mass,fiondus, moles, massa. The

moment we have noted this fact, the simplest case is

easily dealt with. If two bodies of equal weight or

equal mass collide with equal and

^ *~~z opposite velocities ; if, further, the

V_y v_y bodies do not separate after impact

but retain some common velocity,
Fig. 161. i-i i i -7i^

plainly the sole uniquely deter-

mined velocity after the collision is the velocity 0. If,

further, we make the observation that only the dif-

ference of the velocities, that is only relative velocity,

determines the phenomenon of impact, we shall, by

imagining the environment to move, (which experience

an equiva-
lent point
of view.
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tells us has no influence on the occurrence,) also readily

perceive additional cases. For equal inelastic masses

with velocities v and or ^ and v' the velocity after

impact is v/2 or {v -\- v')/2. It stands to reason that

we can pursue such a line of reflection only after ex-

perience has informed us what the essential and de-

cisive features of the phenomena are.

If we pass to unequal masses, we must not only

know from experience that mass generally is of conse-

quence, but also in what manner its influence is effec-

tive. If, for example, two bodies of masses 1 and 3

with the velocities v and V collide, we might reason

The expe-
riential

conditions
of this

method.

V
V

o
-,

I

1

1

I

I

I

V '

},

Fig. 162. Fig. 163.

thus. We cut out of the mass 3 the mass 1 (Fig. 162),

and first make the masses 1 and 1 collide : the result-

ant velocity is (y -f- V}/2. There are now left, to

equalise the velocities (?/ -\- Vs

)

/
'2 and V, the masses

1 -|- 1 = 2 and 2, which applying the same principle

gives

v+ V
^~ " v+3F v + 3F-k~ + v

2 4 1 + 3 *

Let us now consider, more generally, the masses

m and m' , which we represent in Fig. 163 as suitably

proportioned horizontal lines. These masses are af-

fected with the velocities v and v'
9
which we represent

by ordinates erected on the mass-lines. AssurrK&g that
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its points of ;;/ < m!', we cut off from m a portion ;//. The offsetting

wkh
a
the of ;;/ and m gives the mass 2;// with the velocity (v +

v')/2. The dotted line indicates this relation. We
proceed similarly with the remainder ;;/'— m. We cut

off from im a portion m — m, and obtain the mass

2m — (///— ;;/) with the velocity (?; -|- z/)/2 and the

mass 2 (in —m) with the velocity \{v + v')/2 + v'~\/2.

In this manner we may proceed till we have obtained

for the whole mass m -f m the same velocity u. The

constructive method indicated in the figure shows very

plainly that here the surface equation (ni + ;//') u =
mv + m'v' subsists. We readily perceive, however,

that we cannot pursue this line of reasoning except the

sum m v -f m'v, that is the form of the influence of m

and v, has through some experience or other been pre-

viously suggested to us as the determinative and de-

cisive factor. If we renounce the use of the Newtonian

principles, then some other specific experiences con-

cerning the import of m v which are equivalent to those

principles, are indispensable,

second, the 7. The impact of elastic masses may also be treated

eiS °*
by the Newtonian principles. The sole observation

here required is, that a deformation of elastic bodies

calls into play forces of restitution, which directly de-

pend on the deformation. Furthermore, bodies pos-

sess impenetrability ; that is to say, when bodies af-

fected with unequal velocities meet in impact, forces

which equalise these velocities are produced. If two

elastic masses M, m with the velocities C, c collide, a

deformation will be effected, and this deformation will

not cease until the velocities of the two bodies are

equalised. At this instant, inasmuch as only internal

forces are involved and therefore the momentum and

masses in

Newton's
view.
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the motion of the centre of gravity of the system re-

main unchanged, the common equalised velocity will be

_MC+mc
U ~~ ~llf~+M~'

Consequently, up to this time, M's velocity has suf-

fered a diminution C—u\ and m's an increase u — c.

But elastic bodies being bodies that recover their

forms, in perfectly elastic bodies the very same forces

that produced the deformation, will, only in the in-

verse order, again be brought into play, through the

very same elements of time and space. Consequently,

on the supposition that m is overtaken by M, M will a

second time sustain a diminution of velocity C— u, and

m will a second time receive an increase of velocity

u _ c. Hence, we obtain for the velocities V, v after

impact the expressions V^= 2u— C and v= 2 u— c, or

V— MC+tn(2c—C) = mc + M(2>C—c)

M+m ,V M+ ^i
'

If in these formulae we put M= m, it will follow The deduc-

that V-=c and v= C\ or, if the impinging masses are jjew^aii

equal, the velocities which they have will be inter-

changed. Again, since in the particular case M/m =
— c/C or MC + mc = also u = 0, it follows that

V= 2u— C=— C and v = 2u — c = — c; that is,

the masses recede from each other in this case with the

same velocities (only oppositely directed) with which

they approached. The approach of any two masses

My m affected with the velocities C, c, estimated as

positive when in the same direction, takes place with

the velocky C— c\ their separation with the velocity

V—v. But it follows at once from V=2u— C,

v = 2u— c, that V— v = — {C— c)) that is, the rela-

tive velocity of approach and recession is the same.
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By the use of the expressions V=2u— C and v =
2 U — c, we also very readily find the two theorems

MV -f m v = MC -f- m c and

MV 2 + mv 2 = MC 2 + mc 2
,

which assert that the quantity of motion before and

after impact, estimated in the same direction, is the

same, and that also the vis viva of the system before

and after impact is the same. We have reached, thus,

by the use of the Newtonian principles, all of Huy-

gens's results.

The impii- 8. If we consider the laws of impact from Huygens's

point of view, the following reflections immediately

claim our attention. The height of ascent which the

centre of gravity of any system of masses can reach is

given by its vis viva, \^2mv 2
. In every case in which

work is done by forces, and in such cases the masses

follow the forces, this sum is increased by an amount

equal to the work done. On the other hand, in every

case in which the system moves in opposition to forces,

that is, when work, as we may say, is done upon the

system, this sum is diminished by the amount of work

done. As long, therefore, as the algebraical sum of

the work done on the system and the work done by the

system is not changed, whatever other alterations may

take place, the sum%2mv 2 also remains unchanged.

Huygens now, observing that this first property of ma-

terial systems, discovered by him in his investigations

on the pendulum, also obtained in the case of impact,

could not help remarking that also the sum of the

vires vivas must be the same before and after im-

pact. For in the mutually effected alteration of the

forms of the colliding bodies the material system con-

sidered has the same amount of work done on it as, on
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the reversal of the alteration, is done by it, provided al-

ways the bodies develop forces wholly determined by

the shapes they assume, and that they regain their

original form by means of the same forces employed to

effect its alteration. That the latter process takes

place, definite experience alone can inform us. This law

obtains, furthermore, only in the case of so-called per-

fectly elastic bodies.

Contemplated from this point of view, the majority The deduc-
r x tion of the

of the Huygenian laws of impact follow at once. Equal laws of im-
J °

#
pact by the

masses, which strike each other with equal but oppo- notion of
7'is viva and

site velocities, rebound with the same velocities. The work.

velocities are uniquely determined only when they are

equal, and they conform to the principle of vis viva

only by being the same before and after impact. Fur-

ther it is evident, that if one of the unequal masses in

impact change only the sign and not the magnitude of

its velocity, this must also be the case with the other.

On this supposition, however, the relative velocity of

separation after impact is the same as the velocity of

approach before impact. Every imaginable case can

be reduced to this one. Let c and c be the velocities

of the mass ;;/ before and after impact, and let them be

of any value and have any sign. We imagine the whole

system to receive a velocity u of such magnitude that

// -f- c = — O + c) or u — (V — OA It: w^ be seen

thus that it is always possible to discover a velocity of

transportation for the system such that the velocity of

one of the masses will only change its sign. And so

the proposition concerning the velocities of approach

and recession holds generally good.

As Huygens's peculiar group of ideas was not fully

perfected, he was compelled, in cases in which the ve-

locity-ratios of the impinging masses were not origin-
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Huygens's ally known, to draw on the Galileo-Newtonian system
tacit appro- . ..

"

pdationof for certain conceptions, as was pointed out above.
the idea of r 1

,

mass. Such an appropriation of the concepts mass and mo-

mentum, is contained, although not explicitly ex-

pressed, in the proposition according to which the ve-

locity of each impinging mass simply changes its sign

when before impact Mjm =— c/C. If Huygens had

wholly restricted himself to his own point of view, he

would scarcely have discovered this proposition, al-

though, once discovered, he was able, after his own

fashion, to supply its deduction. Here, owing to the

fact that the momenta produced are equal and oppo-

site, the equalised velocity of the masses on the com-

pletion of the change of form will be u --=. 0. When the

alteration of form is reversed, and the same amount of

work is performed that the system originally suffered,

the same velocities with opposite signs will be restored.

If we imagine the entire system affected with a ve-

locity of translation, this particular case will simulta-

neously present the generalcase.

Let the impinging masses be

represented in the figure by

M=BC and m = AC (Fig.

164), and their respective velo-

cities by C= AD and c = BE.

On AB erect the perpendicular

CF, and through F draw IK
parallel to AB. Then ID = (in. C—c)/(M+ m) and

KE = (M.C— c)/(M-\- m). On the supposition now

that we make the masses M and m collide with the

velocities ID and KE, while we simultaneously impart

to the system as a whole the velocity

u = AI=KB= C— (in . C~~c)/(M+ 111) ==

c + (M. C—~c)/(M+ vi) = (MC+ mc)/(M+ m),

Construc-
tive com-
parison of
the special
and general
case of im-
pact.

Fig. 164.
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the spectator who is moving forwards with the velocity

u will see the particular case presented, and the spec-

tator who is at rest will see the general case, be the

velocities what they may. The general formulae of im-

pact, above deduced, follow at once from this concep-

tion. We obtain :

V=AG= C-2^p e
Jt =^£+^z£l

v = BjET= c 4- I —,r—;— = "—ji>~7
"

*

1 M -\- m M+ m
Huyeren's successful employment of the fictitious signifi-

JO L J
m

canceorthe

motions is the outcome of the simple perception that fictitious
r x

.
motions.

bodies not affected with differences of velocities do not

act on one another in impact. All forces of impact are

determined by differences of velocity (as all thermal

effects are determined by differences of temperature).

And since forces generally determine, not velocities,

but only changes of velocities, or, again, differences of

velocities, consequently, in every aspect of impact the

sole decisive factor is differences of velocity. With re-

spect to which bodies the velocities are estimated, is

indifferent. In fact, many cases of impact which from

lack of practice appear to us as different cases, turn

out on close examination to be one and the same.

Similarly, the capacity of a moving body for work, velocity, a

whether we measure it with respect to the time of its level,

action by its momentum or with respect to the distance

through which it acts by its vis viva, has no signifi-

cance referred to a single body. It is invested with

such, only when a second body is introduced, and, in

the first case, then, it is the difference of the veloci-

ties, and in the second the square of the difference that

is decisive. Velocity is a physical level, like tempera-

ture, potential function, and the like.
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Possible It remains to be remarked, that Huygens could
different ......... ..
origin of have reached, originally, in the investigation of the
Huygens's
ideas. phenomena of impact, the same results that he pre-

viously reached by his investigations of the pendulum.

In every case there is one thing and one thing only to

be done, and that is, to discover in all the facts the same

elements, or, if we will, to rediscover in one fact the

elements of another which we already know. From
which facts the investigation starts, is, however, a

matter of historical accident.

Conserva- 9. Let us close our examination of this part of the

mentnm in- subject with a few general remarks. The sum of the
terpreted. . r ...... , .

momenta of a system ot moving bodies is preserved in

impact, both in the case of inelastic and elastic bodies.

But this preservation does not take place precisely in

the sense of Descartes. The momentum of a body is

not diminished in proportion as that of another is in-

creased ; a fact which Huygens was the first to note.

If, for example, two equal inelastic masses, possessed

of equal and opposite velocities, meet in impact, the

two bodies lose in the Cartesian sense their entire mo-

mentum. If, however, we reckon all velocities in a

given direction as positive, and all in the opposite as

negative, the sum of the momenta is preserved. Quan-

tity of motion, conceived in this sense, is always pre-

served.

The vis viva of a system of inelastic masses is al-

tered in impact ; that of a system of perfectly elastic

masses is preserved. The diminution of vis viva pro-

duced in the impact of inelastic masses, or produced

generally when the impinging bodies move with a com-

mon velocity, after impact, is easily determined. Let

M, tn be the masses, C, c their respective velocities be-
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fore impact, and u their common velocity after impact ; Conserva-
tion of vis

then the loss of vis viva is viva in im-
pact inter-

1ATC 2 + \mc 2 — i(M+ m)u 2
,

(l)preted.

which in view of the fact that u = (MC+ ;// c)/(M-\- /;.')

may be expressed in the form ^(Mm/Af -\- 111) (C

—

c) 2
.

Carnot has put this loss in the form

\M{C— u) 2 + \mfu — c) 2 (2)

If we select the latter form, the expressions \M{C— u) 2

and -!;;/(//— c) 2 will be recognised as the vis viva gen-

erated by the work of the internal forces. The loss of

vis viva in impact is equivalent, therefore, to the work

done by the internal or so-called molecular forces. If

w7e equate the two expressions (1) and (2), remember-

ing that (M -f- ;//)// = MC -\- mc, we shall obtain an

identical equation. Carnot's expression is important

for the estimation of losses due to the impact of parts

of machines.

In all the preceding expositions we have treated oblique
r

. . .
impact.

the impinging masses as points which moved only in the

direction of the lines joining them. This simplifica-

tion is admissible when the centres of gravity and the

point of contact of the impinging masses lie in one

straight line, that is, in the case of so-called direct im-

pact. The investigation of what is called oblique im-

pact is somewhat more complicated, but presents no

especial interest in point of principle.

A question of a different character was treated by The centre
___ - ..

., ... . of percus-
Wallis. If a body rotate about an axis and its motion sion.

be suddenly checked by the retention of one of its

points, the force of the percussion will vary with the

position (the distance from the axis) of the point ar-

rested. The point at which the intensity of the impact

is greatest is called by Wallis the centre of percussion.
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The ballis-

tic pendu-
lum.

If this point be checked, the axis will sustain no pres-

sure. We have no occasion here to enter in detail

into these investigations ; they were extended and de-

veloped by Wallis's contemporaries and successors in

many ways.

10. We will now briefly examine, before concluding

this section, an interesting application of the laws of

impact ; namely, the determination of the velocities of

projectiles by the ballistic pendulum. A mass M is sus-

pended by a weightless and massless

string (Fig. 165), so as to oscillate as a

pendulum. While in the position of

equilibrium it suddenly receives the hori-

zontal velocity V. It ascends by virtue

of this velocity to an altitude h = (/)

(1 — cos a) = V 2 /2g, where /denotes the

length of the pendulum, a the angle of

elongation, and g the acceleration of

As the relation T= nVTjg subsists between

we
gravity.

the time of oscillation T and the quantities /, 6 ,

easily obtain V= {gT/n)V 2 {I — cos a), and by the

use of a familiar trigonometrical formula, also

2 . a
V= — ?Tsin --r .

n 2

its formula. If now the velocity V is produced by a projectile of

the mass m which being hurled with a velocity v and

sinking in M'\s arrested in its progress, so that whether

the impact is elastic or inelastic, in any case the two

masses acquire after impact the common velocity V, it

follows that mv = (Af+ m) V\ or, if tn be sufficiently

small compared with M, also v = (M/tri)F; whence

finally

a
v = M

m k T^sin
2
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If it is not permissible to regard the ballistic pen- a different

.
deduction.

dulum as a simple pendulum, our reasoning, in con-

formity with principles before employed, will take the

following shape. The projectile m with the velocity v

has the momentum mv, which is diminished by the

pressure/ due to impact in a very short interval of

time r to mV. Here, then, m (v— V) = pr, or, if V
compared with v is very small, mv = pr. With Pon-

celet, we reject the assumption of anything like in-

stantaneous forces, which generate instanter velocities.

There are no instantaneous forces. What has been

called such are very great forces that produce per-

ceptible velocities in very short intervals of time, but

which in other respects do not differ from forces that

act continuously. If the force active in impact cannot

be regarded as constant during its entire period of ac-

tion, we have only to put in the place of the expression

pr the expression Cpdt. In other respects the reason-

ing is the same.

A force equal to that which destroys the momentum The vis

of the projectile, acts in reaction on the pendulum. If work of the

ii' r - r
pendulum.

we take the line of projection of the shot, and conse-

quently also the line of the force, perpendicular to the

axis of the pendulum and at the distance b from it, the

moment of this force will be bp, the angular accelera-

tion generated bp/^2mr 2
, and the angular velocity pro-

duced in time r

b
.
pr b m

v

Cp:
J£mr 2 ^ 771 r 2 '

The vis viva which the pendulum has at the end of

time r is therefore

/,2W 2
Z,2

Xq) 2 2>77i

r

2 = y ^ —

.

*^ l
2>7717' 2
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The result, By virtue of this vis viva the pendulum performs
the same. . • -\ »*-/ -\ ' it

the excursion a, and its weight Mg, {a being the dis-

tance of the centre of gravity from the axis,) is lifted

the distance a (I — cos^). The work performed here

is Mg a (1—cos^f), which is equal to the above-men-

tioned vis viva. Equating the two expressions we
readily obtain

j/ 2M%a 2m r 2 (1 — cos a)

nib

and remembering that the time of oscillation is

Tz=7t
\-Jfja>

and employing the trigonometrical reduction which

was resorted to immediately above, also

2 M a ^ .a
v = - - .- gl . sin- .

7t m b 2

interpreta- This formula is in every respect similar to that ob-
tion of the
result. tained for the simple case. The observations requisite

for the determination of v, are the mass of the pendu-

lum and the mass of the projectile, the distances of

the centre of gravity and point of percussion from the

axis, and the time and extent of oscillation. The form-

ula also clearly exhibits the dimensions of a velocity.

The expressions 2/7T and sin(c^/2) are simple num-

bers, as are also M/m and a/b, where both numerators

and denominators are expressed in units of the same

kind. But the factory T has the dimensions // _1 , and

is consequently a velocity. The ballistic pendulum

was invented by Robins and described by him at length

in a treatise entitled New Principles of Gunnery, pub-

lished in 1742.



THE EXTENSION OE THE PRINCIPLES, 331

d'alembert's PRINCIPLE,

i. One of the most important principles for the History of
the prin-

,:~pid and convenient solution of the problems of me- cipie.

chanics is the principle of D'Alembert. The researches

concerning the centre of oscillation on which almost all

prominent contemporaries and successors of Huygens

had employed themselves, led directly to a series of

simple observations which D'Alembert ultimately gen-

eralised and embodied in the principle which goes by

his name. We will first cast a glance at these prelim-

inary performances. They were almost without excep-

tion evoked by the desire to replace the deduction of

Huygens, which did not appear sufficiently obvious, by

one that was more convinci?ig. Although this desire was

founded, as we have already seen, on a miscompre-

hension due to historical circumstances, we have, of

course, no occasion to regret the new points of view

which were thus reached.

2. The first in importance of the founders of the James Ber-
noulli's

theorv of the centre of oscillation, after Huygens, iscontribu-
J tionstothe

Tames Bernoulli, who sought as early as 1686 to ex- theory of
J

#
the centre

plain the compound pendulum by the lever. He ar-of osciiia-

rived, however, at results which not only were obscure

but also were at variance with the conceptions of Huy-

gens. The errors of Bernoulli were animadverted on

by the Marquis de L'Hopital in the Journal de Rotter-

dam, in 1690. The consideration of velocities acquired

in infinitely small intervals of time in place of velocities

acquired Infinite times—a consideration which the last-

named mathematician suggested—led to the removal
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of the main difficulties that beset this problem ; and in

1691, in the Acta Eruditorum, and, later, in 1703, in the

Proceedings of the Paris Academy James Bernoulli cor-

rected his error and presented his results in a final and

complete form. We shall here reproduce the essential

points of his final deduction,

james Ber- A horizontal, massless bar AB (Fig. 166) is free to
noulli'sde-

m

v J

ductionof rotate about A; and at the distances r, r' from A the
the law of

'

/
the com- masses ;;/, ni are attached. The accelerations with which
pound pen-
dulum from these masses as thus connected
the princi- #2'/" x Wr
pie of the nr1

1
'1 ^^a will fall must be different from

lever. ^^-^ **

^-^'^^ ' the accelerations wrhich they
*^"^

T,. rr would assume if their connec-
Fig. 166.

tions were severed and they fell

freely. There will be one point and one only, at the

distance x, as yet unknown, from A which will fall

with the same acceleration as it would have if it were

free, that is, with the acceleration g. This point is

termed the centre of oscillation.

If ;;/ and m were to be attracted to the earth, not

proportionally to their masses, but ;;/ so as to fall when
free with the acceleration cp = gr/x and m' with the

acceleration cp' = gr'/x, that is to say, if the natural

accelerations of the masses were proportional to their

distances from A, these masses would not interfere with

one another when connected. In reality, however, m
sustains, in consequence of the connection, an upward
component acceleration g— cp, and ni receives in virtue

of the same fact a downward component acceleration

cp' — g; that is to say, the former suffers an upward

force of m (g— cp) = g{x — r/x) m and the latter a

downward force of ///' (cp' — g) = g (r' — x'/x) m\

Since, however, the masses exert what influence

they have on each other solely through the medium of
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the lever by which they are joined, the upward force The law of
the distri-

upon the one and the downward force upon the other bution of
the effects

must satisfy the law of the lever. If ;;/ in conse- of theim-

quence of its being connected with the lever is held forces, in

back by a force /"from the motion which it would take, nouiiis ex-

if free, it will also exert the same force /on the lever-

arm r by reaction. It is this reaction pull alone that

can be transferred to ;;/' and be balanced there by a

pressure/'= (r/r')f, and is therefore equivalent to the

latter pressure. There subsists, therefore, agreeably

to what has been above said, the relation g (V — x/x)

vi — r/r' . g(x — r/x) m or, {x— r) m r = (r
f — x) m'r

,

from which we obtain x = (nir 2 -|- in'r' 2 )/(inr -\- m'r'),

exactly as Huygens found it. The generalisation of

this reasoning, for any number of masses, which need

not lie in a single straight line, is obvious.

3. John Bernoulli (in 1712) attacked in a different The prin-

1 11 ri r ... . TT . ciple of
manner the problem of the centre of oscillation. His John Ber-

r . 1 1 • i • /-a 11 i
noulli'sso-

performances are easiest consulted in his Collected lution of

Works {Opera, Lausanne and Geneva, 1762, Vols. Ilofthecen-

and IV). We shall examine in detail here the main lation.

ideas of this physicist. Bernoulli reaches his goal by

conceiving the masses and forces separated.

First, let us consider two simple pendulums of dif- The first

ferent lengths /,
/' whose bobs are affected with gravi- BemouiH's

1

. . • 1 i 1 1 r 1 deduction.
tational accelerations proportional to the lengths of the

pendulums, that is, let us put ///' =g/g'. As the time

of oscillation of a pendulum is T= 7ty l/g, it follows

that the times of oscillation of these pendulums will be

the same. Doubling the length of a pendulum, ac-

cordingly, while at the same time doubling the accel-

eration of gravity does not alter the period of oscilla-

tion.

Second, though we cannot directly alter the accel-
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The second eration of gravity at any one spot on the earth, we

BemoiiiH's
1

can do what amounts virtually to this. Thus, imagine
e uction.

^ g^ajg^t massless bar of length ia, free to rotate about

its middle point ; and attach to the one ex-

-' tremity of it the mass m and to the other the

mass ;//'. Then the total mass is m -f w' at

the distance a from the axis. But the force

which acts on it is {in — ;//') g, and the ac-

5 celeration, consequently, (;;/— m'/m -f ///) g.

Fig. 167. Hence, to find the length of the simple pen-

dulum, having the ordinary acceleration of

gravity g, which is isochronous with the present pen-

dulum of the length a, we put, employing the preced-

ing theorem,

/ o-
7

m 4- m— =— <^
, or / = a ,

a 111 — ;;/ m — m

gyration.

;;/ + m'*

The third Third, we imagine a simple pendulum of length 1

de
e
termina^ with the mass 111 at its extremity. The weight of m

centre of
e

produces, by the principle of the lever, the same ac-

celeration as half this force at a distance 2 from the

point of suspension. Half the mass m placed at the

distance 2, therefore, would suffer by the action of the

force impressed at 1 the same acceleration, and a fourth

of the mass m would suffer double the acceleration ; so

that a simple pendulum of the length 2 having the orig-

inal force at distance 1 from the point of suspension

and one-fourth the original mass at its extremity would

be isochronous with the original one. Generalising

this reasoning, it is evident that we may transfer any

force / acting on a compound pendulum at any dis-

tance r, to the distance 1 by making its value r/, and

any and every mass placed at the distance r to the

distance 1 by making its value r 2 m, without changing
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the time of oscillation of the pendulum. If a force f
act on a lever-arm a (Fig. 168) while at the distance r

from the axis a mass m is attached, f will be equiva-

lent to a force afjr impressed on

m and will impart to it the linear ^
acceleration af/mrand the angu- a

lar acceleration af/mr 2
. Hence, '

to find the angular acceleration

of a compound pendulum, wre

divide the sum of the statical moments by the sum of

the moments of inertia.

Brook Taylor, an Englishman,* also developed The re-

. . . , - • 11 1 • 1 1
searches of

this idea, on substantially the same principles, but Brook Tay-

quite independently of John Bernoulli. His solution,

however, was not published until some time later, in

1 715, in his work, Methodus Incrementoriim.

The above are the most important attempts to solve

the problem of the centre of oscillation. We shall see

that they contain the very same ideas that D'Alembert

enunciated in a generalised form.

4. On a system of points M, M\ M". . . . connected Motion of a
. . . , . r

system of
with one another in any way,y the iorces F, F , F . . . . points sub-

are impressed. (Fig. 169.) These forces would im- straints.

part to the free points of the system certain determinate

motions. To the connected points, however, different

motions are usually imparted—motions which could

be produced by the forces W, W\ W" . . . . These

last are the motions which we shall study.

Conceive the force P resolved into W and V, the

force F* into W and V, and the force F" into W"
* Author of Taylor's theorem, and also of a remarkable work on perspec-

tive.— Trans.

\ In precise technical language, they are subject to constraints, that is,

forces regarded as infinite, which compel a certain relation between their

motions.— Trans.
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Statement
of D'Alem-
bert's prin-
ciple.

and V", and so on. Since, owing to the connections,

only the components IV, IV, IV". ... are effective,

therefore, the forces V, V, V" . . . . must be equilib-

rated by the connections. We will call the forces P, P'

,

P" the impressed forces,

Various
forms in

which the
principle
may be ex-

pressed.

Mi^

Fig. 169.

. the forces JF, W,W" ,

which produce the ac-

tual motions, the effective

forces, and the forces V,

V, V" . . . . the . forces

gained and lost, or the

equilibrated forces. We
perceive, thus, that if we

resolve the impressed forces into the effective forces

and the equilibrated forces, the latter form a system

balanced by the connections. This is the principle of

D'Alembert. We have allowed ourselves, in its expo-

sition, only the unessential modification of putting

forces for the momenta generated by the.forces. In this

form the principle was stated by D'Alembert in his

Traite de dynamique, published in 1743.

As the system V, V , V" . ... is in equilibrium, the

principle of virtual displacements is applicable thereto.

This gives a second form of D'Alembert's principle.

A third form is obtained as follows : The forces P, P' . . . .

are the resultants of the components IV, W . . . . and

V, V. . . . If, therefore, we combine with the forces

W, W. ... and V, V . . . . the forces —P, —P f

. . . .,

equilibrium will obtain. The force-system — P, W, V
is in equilibrium. But the system V \s independently

in equilibrium. Therefore, also the system — P, TV is

in equilibrium, or, what is the same thing, the system

jp
f
— jfis in equilibrium. Accordingly, if the effective

forces with opposite signs be joined to the impressed
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forces, the two, owing to the connections, will balance.

The principle of virtual displacements may also be ap-

plied to the system P, — W. This Lagrange did in his

Mccanique analytique, 1788.

The fact that equilibrium subsists between the sys- An equjva-
1

# . lent pnnci-

JV. may be expressed in still pie em-
7 J r ployed by

Hermann
and Euler.

HZ

tern P and the system

another way. We may say that

the system W\s equivalent to the _p

system P. In this form Her-
*

mann (Phoronomia, 1716) and

Euler {Comment. Acad. Petrop.,

Old Series, Vol. VII, 1740) employed the principle.

It is substantially not different from that of D'Alembert.

5. We will now illustrate D'Alembert' s principle by

one or two examples.

Fig. 170.

On a massless wheel and axle with the radii P, r the illustration
ol D Alem-

loads P and O are hung, which are not in equilibrium, bert's Prm-^ ° 7 ciple by the
motion of a

wheel and
We resolve the force P into (1) W
(the force which would produce the

actual motion of the mass if this were

free) and (2) .V, that is, we put

P= W+ Tand also Q = W+ V
\

it being evident that we may here

disregard all motions that are not

in the vertical. We have, accord-

axle.

Fig. 171.

ingly, V=P— Wand V'=Q — W',

and, since the forces V, V are in equilibrium, also

V. R= W . r. Substituting for V, W in the last equa-

tion their values in the former, we get

(/>_ W)R = (Q—W')r (1)

which may also be directly obtained by the employ-

ment of the second form of D'Alembert's principle.

From the conditions of the problem we readily perceive
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that we have here to deal with a uniformly accelerated

motion, and that all that is therefore necessary is to

ascertain the acceleration. Adopting gravitation meas-

ure, we have the forces W and W, which produce in

the masses P/g and Q/g the accelerations y and y'\

wherefore, W=(P/g)y and W=(Q/g)y'. But we

also know that y'=— y{r/R). Accordingly, equation

(i) passes into the form

p -'r
g
y
)

ji==
{
Q+Hr

)
r (2)

whence the values of the two accelerations are ob-

tained

PR-Qr _ _ ._ PR—Qr
r,V '= PlvTQ^ Rg

'

and Y '
=

PR* + Q>*

These last determine the motion.

Employ- It will be seen at a glance that the same result can

Ideas stat-

e

be obtained by the employment of the ideas of statical
ica
ent^nd moment and moment of inertia. We get by this method

moment of
,

, .

inertia, to for the angular acceleration
obtain this

result. pR_Q r ^ PR—Qr
V = P 0~~ ~~ PR 2 + Qr* '

g '

3

-R2 + ±r* ^^
g g

and as y = Rcp and y '= — r^we re-obtain the pre-

ceding expressions.

When the masses and forces are given, the problem

of finding the motion of a system is determinate. Sup-

pose, however, only the acceleration y is given with

which P moves, and that the problem is to find the loads

P and Q that produce this acceleration. We obtain

easily from equation (2) the result P= Q(Rg+ ry)

rl(g
— y)R 2

, that is, a relation between P and Q.

One of the two loads therefore is arbitrary. The prob-
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lem in this form is an indeterminate one, and may be

solved in an infinite number of different ways.

The following may serve as a second example.

A weight P (Fig. 172) free to move on a vertical

straight line AB> is attached to a cord

passing over a pulley and carrying a

weight Q at the other end. The cord

makes with the line AB the variable

angle a. The motion of the present

case cannot be uniformly accelerated.

But if we consider only vertical mo-

tions we can easily give for every

value of a the momentary accelera-

tion (y and y') of P and Q. Proceeding exactly as

we did in the last case, we obtain

P=W+V,
Q=W + V

also

V cos a = V, or, since y' = — ycosa,^

v- ~~^ „„,\ ^o „, — p— y.^ whence

A second \\

lustration
of the prin-
ciple.

Fig. 172.

Q -f-
-*" cos a y I cos a -.

P— Q cos a
Y= Q cos *aT-\-~P

g

P— Qcosa
y = cos a g.

Qcos'*a -\- P
Again the same result may be easily reached by the

employment of the ideas of statical moment and mo-

ment of inertia in a more generalised form. The fol-

lowing reflexion will render this clear. The force, or

statical moment, that acts on P is P— Q cos a. But

the weight Q moves cos** times as fast as P\ conse-

quently its mass is to be taken cos 2 cx times. The ac-

celeration which P receives, accordingly is,

Solution of
this case
also by the
ideas of
statical mo-
ment and
moment of
inertia gen-
eralised.
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P— Qcosa P— Qcosa
y= Q P~lQc^or+~P g'

cos 2 a A

In like manner the corresponding expression for y' may

be found.

The foregoing procedure rests on the simple re-

mark, that not the circular path of the motion of the

masses is of consequence, but only the relative veloci-

ties or relative displacements. This extension of the

concept moment of inertia may often be employed to

advantage,

import and 6. Now that the application of D'Alembert's prin-

of D
,a

Aiem- ciple has been sufficiently illustrated, it will not be diffi-

cile?
prm

"

cult to obtain a clear idea of its significance. Problems

relating to the motion of connected points are here dis-

posed of by recourse to experiences concerning the

mutual actions of connected bodies reached in the in-

vestigation of problems of equilibrium. Where the last

mentioned experiences do not suffice, D'Alembert's

principle also can accomplish nothing, as the examples

adduced will amply indicate. We should, therefore,

carefully avoid the notion that D'Alembert's principle

is a general one which renders special experiences su-

perfluous. Its conciseness and apparent simplicity are

wholly due to the fact that it refers us to experiences

already in our possession. Detailed knowledge of the

subject under consideration founded on exact and mi-

nute experience, cannot be dispensed with. This knowl-

edge we must obtain either from the case presented,

by a direct investigation, or we must previously have

obtained it, in the investigation of some other subject,

and carry it with us to the problem in hand. We learn,

in fact, from D'Alembert's principle, as our examples

show, nothing that we could not also have learned by
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e to the
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other methods. The principle fulfils in the solution

of problems, the office of a routine-form which, to a

certain extent, spares us the trouble of thinking out

each new case, by supplying directions for the employ-

ment of experiences before known and familiar to us.

The principle does not so much promote our insight

into the processes as it secures us a practical mastery of

them. The value of the principle is of an economical

character.

When we have solved a problem by D'Alembert's The reia-

principle, we may rest satisfied with the experiences evai

previously made concerning equilibrium, the applica- cipie ^_
tion of which the principle implies. But if we wish^e

h
s

a
° f

ics>

clearly and thoroughly to apprehend the phenomenon,

that is, to rediscover in it the simplest mechanical ele-

ments with which we are familiar, we are obliged to

push our researches further, and to replace our expe-

riences concerning equilibrium either by the Newtonian

or by the Huygenian conceptions, in some way similar

to that pursued on page 266. If we adopt the former

alternative, we shall mentally see the accelerated mo-

tions enacted which the mutual action of bodies on one

another produces ; if we adopt the second, we shall di-

rectly contemplate the work done, on which, in the

Huygenian conception, the vis viva depends. The latter

point of view is particularly convenient if we employ

the principle of virtual displacements to express the

conditions of equilibrium of the system Vox P— IV.

D'Alembert's principle then asserts, that the sum of

the virtual moments of the system V, or of the system

p __ W, is equal to zero. The elementary work c f :he

equilibrated forces, if we leave out of account the strain-

ing of the connections, is equal to zero. The total

work done, then, is performed solely by the system P,
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and the work performed by the system J^must, accord-

ingly, be equal to the work done by the system P. All

the work that can possibly be done is due, neglecting

the strains of the connections, to the impressed forces.

As will be seen, D'Alembert's principle in this form is

not essentially different from the principle of vis viva.

Form of aP- 7. In practical applications of the principle of
plication of .

D'Aiem- D'Alembert it is convenient to resolve every force P
bert'sprin- .

cipie, and impressed on a mass m of the system into the mutually
the result-

J

ingequa- perpendicular components X, Y, Z parallel to the axes
tions of mo-
tion, of a system of rectangular coordinates ; every effective

force W mto corresponding components mi;, nay m2»

where B>, 77, 8, denote accelerations in the directions of

the coordinates ; and every displacement, in a similar

manner, into three displacements 8x, Sy, dz. As the

work done by each component force is effective only in

displacements parallel to the directions in which the

components act, the equilibrium of the system (P,— W)
is given by the equation

2\(X—m5)6x+ (Y—mri)6y+(Z—m2)dz\= (1)

or

2(X$x + Ydy+ Zdz) = 2m(gdx+j
?fy+Z$z). . (2)

These two equations are the direct expression of the

proposition above enunciated respecting the possible

work of the impressed forces. If this work be — 0, the

particular case of equilibrium results. The principle

of virtual displacements flows as a special case from

this expression of D'Alembert's principle ; and this is

quite in conformity with reason, since in the general

as well as in the particular case the experimental per-

ception of the import of work is the sole thing of con-

sequence.

Equation (i) gives the requisite equations of mo-
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tion ; we have simply to express as many as possible

of the displacements dx, dy, dz by the others in terms

of their relations to the latter, and put the coefficients

of the remaining arbitrary displacements — 0, as was
illustrated in our applications of the principle of vir-

tual displacements.

The solution of a very few problems by D'Alem- Conve-

b,, •. .,, rr . . . . .. nience and
ert s principle will suffice to impress us with a full utility of

f . . t, -it 1 • 1 D'Alem-
sense of its convenience. It will also give us the con- bert's Pnn-

viction that it is possible, in every case in which it may
Clpe "

be found necessary, to solve directly and with perfect

insight the very same problem by a consideration of

elementary mechanical processes, and to arrive thereby

at exactly the same results. Our conviction of the

feasibility of this operation renders the performance of

it, in cases in which purely practical ends are in view,

unnecessary.

THE PRINCIPLE OF VIS VIVA.

i. The principle of vis viva, as we know, was first The orig-

employed by Huygens. John and Daniel Bernoulli icaiform°of

had simply to provide for a greater generality of ex- Cipie"
n "

pression ; they added little. If fl, p',J>". . . . are weights,

;;/, ;;/', ///'. . . . their respective masses, h, ti , h" . . . . the

distances of descent of the free or connected masses,

and v, v, v". . . . the velocities acquired, the relation

obtains

2ph = ±2 ;;/7' 2
.

If the initial velocities are not = 0, but are z>
o , v

(

',

v
o
".

. . ., the theorem will refer to the increment of the

vis viva by the work and read
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Theprinci- The principle still remains applicable when p . . . .

?c
e
fo^ces

ie

of are, not weights, but any constant forces, and h . . .

any kind. ^ ^ vertical spaces fallen through, but any paths in

the lines of the forces. If the forces considered are

variable, the expressions p/i, p'/i'. . . . must be replaced

by the expressions Cpds,Jp'ds' . . . ., in which p de-

notes the variable forces and ds the elements of dis-

tance described in the lines of the forces. Then

Jpds+Jp'ds' + . . .=i2m(v* — v
Q
*)

or
2Cpds = %2m(v 2— v *) (1)

2. In illustration of the principle of vis viva we

shall first consider the simple problem which we treated

by the principle of D'Alembert. On

a wheel and axle with the radii R, r

hang the weights P, Q. When this

machine is set in motion, work is per-

formed by which the acquired vis viva

is fully determined. For a rotation of

the machine through the angle a, the

work is

P. Ra—Q. ra = a(PR—Qr).
Calling the angular velocity which

corresponds to this angle of rotation, cp, the vis viva

generated will be

The princi-
ple illus-

trated by
the motion
of a wheel
and axle.

Fig. i/3-

P (Rq))'
,

<2('<P)
2

(PR 2 + Qr*).

Consequently, the equation obtains

a(PR—Qr) = ?? l(PR* + Qr*) . . . . (1)

Now the motion of this case is a uniformly accelerated

motion ;
consequently, the same relation obtains here

between the angle ex, the angular velocity cp> and the
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angular acceleration ip, as obtains in free descent be-

tween s, v, g. If in free descent s= v 2 /2g, then here

a — cp 2 /2 i/>.

Introducing this value of a in equation (})>J^^get

for the angular acceleration of P, tp = (P.R— Qr/

~P^ -\^Qr 2
) g, and, consequently, for its absolute ac-

celeration y=(PR—&/PR 2 +~Qr 2
) Rg, exactly as

in the previous treatment of the problem.

As a second example let us consider the case of aAroiHng^

massless cylinder of radius r, in the surface of which, an^nciined

diametrically opposite each other, are fixed two equal

masses m, and which in consequence of the weight of

Fig. 174. Fi S- W
these masses rolls without sliding down an inclined

plane of the elevation a. First, we must convince our-

selves, that in order to represent the total vis viva of

the system we have simply to sum up the vis viva of

the motions of rotation and progression. The axis of

the cylinder has acquired, we will say, the velocity u

in the direction of the length of the inclined plane, and

we will denote by v the absolute velocity of rotation of

the surface of the cylinder. The velocities of rotation v

of the two masses m make with the velocity of progres-

sion u the angles 6 and 0' (Fig. 175), where 6+ 6'

= 180°. The compound velocities w and z satisfy

therefore the equations

w 2 =u 2 + v 2 — 2t^vcosd

z 2 = n 2 -\- v 2 — 2uvcos6'.
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The law of But since cos 6=— cos 6', it follows that
motion of
su

f.

h a w 2
-f z 2 = 2 u 2 + 2 v 2

, or,
cylinder, ' '

7 '

-| /// z# 2
-f- | ;;/ z 2 = ±m 2u 2

-f- J ;;/ 2 z'
2 —- ;;/ //

2 -|- ;;/ ^ 2

.

If the cylinder moves through the angle qj, m describes

in consequence of the rotation the space rep, and the

axis of the cylinder is likewise displaced a distance rep.

As the spaces traversed are to each other, so also

are the velocities v and //, which therefore are equal.

The total vis viva may accordingly be expressed by

2m-u 2
. If /is the distance the cylinder travels along

the length of the inclined plane, the work done is

2mg . Isn\a=z2mu 2
\ whence u = V gl. sin a. If we

compare with this result the velocity acquired by a body

in sliding down an inclined plane, namely, the velocity

V ig"l sin a, it will be observed that the contrivance we
are here considering moves with only one-half the ac-

celeration of descent that (friction neglected) a sliding

body would under the same circumstances. The rea-

soning of this case is not altered if the mass be uni-

formly distributed over the entire surface of the cylin-

der. Similar considerations are applicable to the case

of a sphere rolling down an inclined plane. It will be

seen, therefore, that Galileo's experiment on falling

bodies is in need of a quantitative correction.

a modifica- Next, let us distribute the mass ?n uniformly over

preceding the surface of a cylinder of radius 7?, which is coaxal

with and rigidly joined to a massless cylinder of radius

r, and let the latter roll down the inclined plane. Since

here v/u = R/r, the principle of vis viva gives mgl
sin a = ±mu 2 (I -f- R 2 /r 2

), whence

/ 2 p-i sin a
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For Rjr= 1 the acceleration of descent assumes its

previous value g/2. For very large values of R/r the

acceleration of descent is very small. When Rjr = 00

it will be impossible for the machine to roll down the

inclined plane at all.

As a third example, we will consider the case of a The motion
. . ,...-. of a chain

chain, whose total length is /, and which lies partly on on an in-

a horizontal plane and partly on a plane having the plane,

angle of elevation a. If we imagine the surface on

which the chain _&ehac>^B4&&eM^^ x
rests to be very

smooth, any very

small portion of

the chain left hang-
, . Fig. 176.

ing over on the in-

clined plane will draw the remainder after it. If ja is

the mass of unit of length of the chain and a portion x

is hanging over, the principle of vis viva will give for

the velocity v acquired the equation

LI IV^ X X^
-—-- = fxxg sina' = jug ~- sin or,

or v — x vg sin ajl. In the present case, therefore,

the velocity acquired is proportional to the space de-

scribed. The very law holds that Galileo first con-

jectured was the law of freely falling bodies. The

same reflexions, accordingly, are admissible here as at

page 248.

3. Equation (1), the equation of vis viva, can always Extension

be employed, to solve problems of moving bodies, cipil
e
of"S

when the total distance traversed and the force that*""*'

acts in each element of the distance are known. It was

disclosed, however, by the labors of Euler, Daniel Ber-

noulli, and Lagrange, that cases occur in which the
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principle of vis viva can be employed without a knowK

edge of the actual path of the motion. We shall see

later on that Clairaut also rendered important services

in this field.

There- Galileo, even, knew that the velocity of a heavy

Eui
r

e

C

r!

eS

falling body depended solely on the vertical height de-

scended through, and not on the length ox form of the

path traversed. Similarly, Huygens finds that the vis

viva of a heavy material system is dependent on the

vertical heights of the masses of

the system. Euler was able to

make a further step in advance.

If a body K (Fig. 177) is at-

tracted towards a fixed centre

C in obedience to some given

law, the increase of the vis viva

in the case of rectilinear ap-

proach is calculable from the

initial and terminal distances

(r . ri). But the increase is the
Fig. 177. ^ o> t J

same, if K passes at all from the

position r
o

to the position r
t
, independently of the

form of its path, KB. For the elements of the work

done must be calculated from the projections on the

radius of the actual displacements, and are thus ulti-

mately the same as before.

The re- If K is attracted towards several fixed centres C,
searches of ^, „,,, . _...-, j ,-1

Daniel Ber- C , C . . . ., the increase of its vis viva depends on the
noulli and ...... . ,, j ,-, ,

• i

Lagrange, initial distances r
o , r

o , r
Q

. . . . and on the terminal

distances r,, r/, r". . . ., that is on the initial and ter-

minal positions of K. Daniel Bernoulli extended this

idea, and showed further that where movable bodies

are in a state of mutual attraction the change of vis viva

is determined solely by their initial and terminal dis-
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tances from one another. The analytical treatment of

these problems was perfected by Lagrange. If we join

a point having the coordinates a, b, c with a point hav-

ing the coordinates x, y, z, and denote by r the length

of the line of junction and by a
y (3, y the angles that

line makes with the axes of x, y, z, then, according to

Lagrange, because

r 2 = (x — ay + (y — by + (z — c) 2
,

dr y — b
- --

, cos p = "
=

ax r

z — c dr

dr

r dz'

nates.

cosy

dFfr)
Accordingly, if fir) = — »-~— is the repulsive force, or The force

J J v J dr compo-
nents, par-

the negative of the attractive force acting between the tiai ditter-

.
ential coef-

two points, the components will be ficientsof
r the same

dF(r)dr dF(r) ^c
^
onof

X= f(r) cos a = —--^ —
- =—-^ coordl "

v J dr dx dx

J dr ay dy

dF(r)dr dF(r)

The force-components, therefore, are the partial

differential coefficients of one and the same function of

r, or of the coordinates of the repelling or attracting

points. Similarly, if several points are in mutual ac-

tion, the result will be

x= d
-y-
dx

y^JJ
dy'

7.=- U
dz

'
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The force- where U is a function of the coordinates of the points.

This function was subsequently called by Hamilton*

the force-function.

Transforming, by means of the conceptions here

reached, and under the suppositions given, equation

(i) into a form applicable to rectangular coordinates,

we obtain

2C{Xdx + Ydy + Zdz) = 2\m (z>
2— vQ *) or,

since the expression to the left is a complete differen-

tial,

dU
7 ,

dU J dU _

dx
dX +

"di
dy + dz

d
\

2JdU=2(UT
—U ) = 2$m(z*— v*),

where U
x
is a function of the terminal values and U

the same function of the initial values of the coordi-

nates. This equation has received extensive applica-

tions, but it simply expresses the knowledge that under

the conditions designated the work done and therefore

also the vis viva of a system is dependent on the posi-

tions, or the coordinates, of the bodies constituting it.

If we imagine all masses fixed and only a single

one in motion, the work changes only as £7 changes.

The equation U'= constant defines a so-called level

surface, or surface of equal work. Movement upon

such a surface produces no work. U increases in the

direction in which the forces tend to move the bodies.

VII.

THE PRINCIPLE OF LEAST CONSTRAINT.

I. Gauss enunciated (in Crelle'sJournalfur Mathe-

matik, Vol. IV, 1829, p. 233) a new law of mechanics,

the principle of least constraint. He observes, that, in

* On a General Method in Dynamics, Phil. Trans, for 1834. See also C. G.

]. Jacobi, Vorlesungen iiber Dyn-zmik, edited by Clebsch, 1866.
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the form which mechanics has historically assumed, dy- History of

r 11 re 1 TM a 1
the princi-

namics is rounded upon statics, (tor example, DAlem- pie of least

. ^, . , ,, . , (. . , . . constraint.
bert s principle on the principle of virtual displace-

ments,) whereas one naturally would expect that in

the highest stage of the science statics would appear

as a particular case of dynamics. Now, the principle

which Gauss supplied, and which we shall discuss in

this section, includes both dynamical and statical cases.

It meets, therefore, the requirements of scientific and

logical aesthetics. We have already pointed out that this

is also true of D'Alembert's principle in its Lagrangian

form and the mode of expression above adopted.

No essentially new principle, Gauss remarks, can now be

established in mechanics ; but this does not exclude

the discovery of new points of view, from which mechan-
ical phenomena may be fruitfully contemplated. Such
a new point of view is afforded by the principle of

Gauss.

2. Let m, m
f
.... be masses, connected in any man- statement

• 1 i r™ • c /-
°f tne P r in -

ner with one another. These masses, ufree, would, under cipie.

the action of the forces im-

pressed on them, describe in a

very short element of time the

spaces a b, a
f
b

t
. . . . ; but in

consequence of their connec-

tions they describe in the same
element of time the spaces a c,

a
f
c

f
. . . . Now, Gauss's principle asserts, that the mo-

tion of the connected points is such that, for the motion

actually taken, the sum of the products of the mass of

each material particle into the square of the distance of

its deviation from the position it would have reached if

free, namely m(bc) 2
-f- m, (b,c,) 2 + . . . .= 2m(6c) 2

, is

a minimum, that is, is smaller for the actual motion
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than for any other conceivable motion in the sune con-

nections. If this sum, 2m(bc) 2
, is less for rest than

for any motion, equilibrium will obtain. The principle

includes, thus, both statical and dynamical cases.

Definition The sum 2 m(b c) 2 is called the "constraint."* In

straim/
7 forming this sum it is plain that the velocities present

in the system may be neglected, as the relative posi-

tions cf a, b, c are not altered by them.

3. The new principle is equivalent to that of

D'Alembert ; it may be used in place of the latter ; and,

as Gauss has shown, can also be deduced from it. The

impressed forces carry the free mass m in an element of

time through the space ab, the effective forces carry the

same mass in the same time in consequence of the con-

nections through the space ac. We resolve ab into ac

and cb; and do the same for all the

masses. It is thus evident that

forces corresponding to the dis-

^y tances cb, c,b, . . . . and propor-

tional to 7?i cb, 7n
f
c,br .., do not,

Flg
'

I79
' owing to the connections, become

effective, but form with the connections an equilibrat-

ing system. If, therefore, we erect at the terminal posi-

tions c, e
r

, cir ... the virtual displacements^, c, Y,

forming with cb, c, £,.... the angles 6, 0,.... we may

apply, since by D'Alembert's principle forces propor-

tional to 771 cb, 771, c, b r ... are here in equilibrium, the

principle of virtual velocities. Doing so, we shall have

* Professor Mach's term is Abweichungssumme. The Abweichung is the

declination or departure from free motion, called by Gauss the Ablenkung.

(See Duhring, Principien der Mechanik, §§ 168, 169; Routh, Rigid Dynamics,

Part I, §§ 390-394.) The quantity £ m {bey is called by Gauss the Zwang; and

German mathematicians usually follow this practice. In English, the term

constraint is established in this sense, although it is also used with another,

hardly quantitative meaning, for the force which restricts a body absolutely

to moving in a certain way.— Trans.
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V*
; mcb.C V COS #< (1) The deduc-^ y

tion of the

But principle

(/; ^ ) 2 = (/,,-) 2 _|_ (,r) 2 __ 2 /, , . , r COS 6,
constraint.

(£ ^) 2 — (/^) 2 — (> ^) 2 — 2 /^ . <r y cos #, and

^///(/;;j/) 2—2m(fre) 2=2m(cy) 2—22m/? c.cy cos (2)

Accordingly, since by (1) the second member of

the right-hand side of (2) can only be = or negative,

that is to say, as the sum 2m(c y)
2 can never be dimin-

ished by the subtraction, but only increased, therefore

the left-hand side of (2) must also always be positive

and consequently 2m(by) 2 always greater than 2 ?n

(be) 2
, which is to say, every conceivable constraint

from unhindered motion is greater than the constraint

for the actual motion.

4. The declination, be, for the very small element various
. forms in

of time r, may, for purposes of practical treatment, be which the

designated by s, and following Scheffler (Schlomilch's may be ex-
pressed.

Zeitsthrift fur Mathematik und Physik, 1858, Vol. Ill,

p. 197), we may remark that s = yr 2
/2, where y de-

notes acceleration. Consequently, 2 ms 2 may also be

expressed in the forms

7-2 r 2 r 4

2m . s . s =
?
2my . s = -

7
- 2p . s = -— 2my 2

,

where/ denotes the force that produces the declination

from free motion. As the constant factor in no wise

affects the minimum condition, we may say, the actual

motion is always such that

2ms 2
(1)

or

2fs (2)

or

2my 2
(3)

is a minimum.



354 THE SCIENCE OF MECHANICS.

The motion
of a wheel
and axle.

an inc.

plane.
lined

5. We will first employ, in our illustrations, the

third form. Here again, as our first example, we se-

lect the motion of a wheel and axle by

the overweight of one of its parts

and shall use the designations above

frequently employed. Our problem

is, to so determine the actual accel-

erations y oi P and y, of Q, that

{p/g) u - yy + (Q/g) <> - y,y
shall be a minimum, or, since y, =
— y(r/R), so that P (g — y)

2 +
Q(g -\- y.r/R) 2 = N shall assume its smallest value.

Putting, to this end,

dN
dy

we get y = (PP^Qr/PP 2 + ~Qr 2 ) Pg, exactly as in

the previous treatments of the problem.

As our second example, the motion of descent on

an inclined plane may be taken. In this case we shall

employ the first form, 2ms 2
.

Since we have here only to

deal with one mass, our in-

quiry will be directed to find-

ing that acceleration of de-

scent y for the plane by

which the square of the de-

(s 2
) is made a minimum. By Fig. 181 we

-^U-r) + Q
r r

~R
0,

Fig. 181.

clination

have

s* — T 2

+ [r
r 2

y--
}
- sin or,

and putting d(s 2)/dy = 0, we obtain, omitting all

constant factors, 2y— 2g sin a — or y= g. sin at, the

familiar result of Galileo's researches.
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The following example will show that Gauss's prin- a case of

•i-i r>.
equilib-

ciple also embraces cases of equilibrium. On the arms num.

a, a of a lever (Fig. 182) are hung the heavy masses

///, /;/'. The principle requires that m(g— y) 2 -j-

m\g— y') 2 shall be a minimum. But y'= — y(a'/a).

Further, if the masses are in-

versely proportional to the V S I

lengths of the lever-arms, that m\
\ ,\\

is to say, if m/m r = a!'/a, then

y = — y (m/m ). Conse-

quently, m (g — y) 2 -\- m\g -f- Y • -m/m) 2 — N must

be made a minimum. Putting dNjdy = 0, we get

;;/ (1 -f m/m')y ™0or^= 0. Accordingly, in this case

equilibrium presents the least constraint from free mo-

tion.

Every new cause of constraint, or restriction upon New causes
of con-

the freedom of motion, increases the quantity of con- straim in-

crease the

straint, but the increase is always the least possible, departure
. from free

If two or more systems be connected, the motion of motion,

least constraint from the motions of the unconnected

systems is the actual motion.

If, for example, we join together several simple

pendulums so as to form a compound linear pendulum,

the latter will oscillate with the motion

of least constraint from the motion of the

single pendulums. The simple pendulum,

for any excursion a, receives, in the di-

rection of its path, the acceleration g
sin a. Denoting, therefore by y sin a the

acceleration corresponding to this excur-
p

.

i83

sion at the axial distance 1 on the com-

pound pendulum, 2m (g s'ma— ry sin a) 2 or 2pi (g—
r y) 2 will be the quantity to be m ade a minimum. Conse-

quently, 2m(g— ry)r = 0, and y= g(2 mr/2mr 2
).
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The problem is thus disposed of in the simplest man-

ner. But this simple solution is possible only because

the experiences that Huygens, the Bernoullis, and oth-

ers long before collected, are implicitly contained in

Gauss's principle,

niustra- 6. The increase of the quantity of constraint, or
tions of the . . . . ' . £
preceding declination, from free motion by new causes ot con-

straint may be exhibited by the following examples.

Over two stationary pulleys A, B, and beneath a

movable pulley C (Fig. 184), a cord is passed, each

Fig. 184.

extremity of which is weighted with a load P ; and on

C 2, load iP -\- p is placed. The movable pulley will

now descend with the acceleration (p/^-P + /) £• But

if we make the pulley A fast, we impose upon the

system a new cause of constraint, and the quantity of

constraint, or declination, from free motion will be in-

creased. The load suspended from B, since it now

moves with double the velocity, must be reckoned as

possessing four times its original mass. The mova-

ble pulley accordingly sinks with the acceleration

(p/6P ~f- f) g. A simple calculation will show that the

constraint in the latter case is greater than in the former.
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A number, n, of equal weights, /, lying on a smooth

horizontal surface, are attached to 11 small movable

pulleys through which a cord is drawn in the manner

indicated in the figure and loaded at its free extremity

with/. According as all the pulleys are movable or all

except one are fixed, we obtain for the motive weight/,

allowing for the relative velocities of the masses asre-

ferred top, respectively, the accelerations (4/2/1 + 4 n)g

and (4/5) g. If all the n + 1 masses are movable, the

deviation assumes the value/^/4/2+T, which increases

as n, the number of the movable masses, is decreased.

Fig. 186.

7. Imagine a body of weight Q, movable on rollers Treatment

on a horizontal surface, and having an inclined plane^^hj

face. On this inclined face a body of weight P is different^

placed. We now perceive instinctively that P will de- principles,

scend with quicker acceleration when Q is movable

and can give way, than it will when Q is fixed and P's

descent more hindered. To any distance of descent h

of P a horizontal velocity v and a vertical velocity u of

P and a horizontal velocity w of Q correspond. Owing

to the conservation of the quantity of horizontal mo-

tion, (for here only internal forces act,) we have Pv =
Qw, and for obvious geometrical reasons (Fig. 186)

also
// — (?>-)- w) tan a

The velocities, consequently, are
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First, by the V — X co t a . U,
principles JJ _L (J
of the con- *-

servation of pmomentum „n r f
and of vis W p I q COt a • ^'

viva.

For the work 7% performed, the principle of vis

viva gives

_. P u 2 P ( Q \ 2 u*

1 -COtaMg\P+Q ) 2

0~

Multiplying by --, we obtain

, /.,
,

Q cos 2 ^\ u 2

To find the vertical acceleration y with which the

space h is described, be it noted that h = u 2 /2 y. In-

troducing this value in the last equation, we get

__(P+ Q)s'm 2 a
Y ~ ~Pl^a~+~Q~ ' g'

For Q = oo, y = g sin 2 <x, the same as on a sta-

tionary inclined plane. For Q = 0, y = g, as in free

descent. For finite values of Q = mP, we get,

14-;/* .

since -v—-— > 1,sm^ -f- ///

(1 4- ;//) sin 2 a
'

in -f- sm^
The making of Q stationary, being a newly imposed

cause of constraint, accordingly increases the quantity

of constraint, or declination, from free motion.

To obtain y, in this case, we have employed the

principle of the conservation of momentum and the
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principle of vis viva. Employing Gauss's principle, Second, by

we should proceed as follows. To the velocities de- cipie of

noted as u, v, w the accelerations y, d, 8 correspond.

Remarking that in the free state the only acceleration

is the vertical acceleration of P, the others vanishing,

the procedure required is, to make

P P O- (g— r)
2 + # 2 + *

2 =w
g g

a minimum. As the problem possesses significance

only when the bodies P and Q touch, that is only when

Y = (^ +- e) tan a> therefore, also

N= — \g— (8 + €) tan a\ 2 + P- 6* -f
^ £ 2

.

Forming the differential coefficients of this expression

with respect to the two remaining independent vari-

ables 6 and e, and putting each equal to zero, we ob- -

tain

— [g— (#+ «) tana] Ptana-\- P6 = and

~ [>—(# + f) tanar] ^tanor-f ^f = 0.

From these two equations follows immediately
^#— Qs=0, and, ultimately, the same value for y
that we obtained before.

We will now look at this problem from another

point of view. The body P describes at an angle /3

with the horizon the space s, of which the horizontal

and vertical components are v and //, while simulta-

neously <2 describes the horizontal distance w. The
force-component that acts in the direction of s is ./'sin /3,

consequently the acceleration in this direction, allow-

ing for the relative velocities of P and Q, is

P.s'm/3

P Qfw
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Third, by Employing the following equations which are di-

tended con- rectly deducible,
cept of mo- /^i 7-,

merit of in- Qw = PV
ertia. n

v = s cos p
u = v tan /?.

the acceleration in the direction of s becomes

Qs'm/3

and the vertical acceleration corresponding thereto is

Qsm 2
_j$_

an expression, which as soon as we introduce by means

of the equation u = (v + w) tan a, the angle-func-

tions of a for those of fi,
again assumes the form above

given. By means of our extended conception of mo-

ment of inertia we reach, accordingly, the same result

as before.

Fourth, by Finally we will deal with this problem in a direct

cip?es.

prin
" manner. The body P does not descend on the mova-

ble inclined plane with the vertical acceleration g, with

which it would fall if free, but with a different vertical

acceleration, y. It sustains, therefore, a vertical coun-

terforce (P/g)(g—y)- But as P and Q, friction

neglected, can only act on each other by means of a

pressure S, normal to the inclined plane, therefore

P— (g— y) = Scosa and
o

Ss'ma = Q
g

£ -
g

rom this is obtained

PM- Y) = Q
a cot a,
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and by means of the equation y = (8 -\- £) tan#, ulti-

mately, as before,

(P±Q)^
y Psm. 2 a + Q* J

O sin a cos a /ON

/'sin 2 or -f- <2

T^sinrt'cosa' , ON
g — cr (6)

Psm 2 a + <2

If we put jP= O and <z — 45 , we obtain for this Discussion
r ^~ '^ of the re-

particular case y = |^, tf == |^, s = %g. For />/£ = suits.

Q/g— 1 we find the "constraint," or declination from

free motion, to be g 2
/$. If we make the inclined plane

stationary, the constraint will be g 2 /2. If /moved on

a stationary inclined plane of elevation /?, where

tany3 = y/d, that is to say, in the same path in which

it moves on the movable inclined plane, the constraint

would only be g 2 /$. And, in that case it would, in

reality, be less impeded than if it attained the same

acceleration by the displacement of Q.

8. The examples treated will have convinced us that Gauss's
x

. . , principle

no substantially new insight or perception is afforded by affords no
r x

. newinsigri*'

Gauss's principle. Employing form (3) of the prin-

ciple and resolving all the forces and accelerations in

the mutually perpendicular coordinate-directions, giv-

ing here the letters the same significations as in equa-

tion (1) on page 342, we get in place of the declination,

or constraint, ^my 2
, the expression

and by virtue of the minimum condition

dN= 22m 17
X — g) dS + I~— v) dV +
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Z\dZ = 0.

or 2[(X—m£)dg+(Y—mrj)dT?+(Z—m2)dZ]= 0.

Gauss's and If no connections exist, the coefficients of the (in

bert's prin- that case arbitrary) dg, drf, dS,, severally made = 0,
ciples com- . , . - . -^ . • f ,• j
mutable, give the equations of motion. But it connections do

exist, we have the same relations between dg, drj, d2,

as above in equation (i), at page 342, between dx, 6y,

dz. The equations of motion come out the same ; as

the treatment of the same example by D'Alembert's

principle and by Gauss's principle fully demonstrates.

The first principle, however, gives the equations of

motion directly, the second only after differentiation.

If we seek an expression that shall give by differentia-

tion D'Alembert's equations, we are led perforce to the

principle of Gauss. The principle, therefore, is new

only in form and not in matter. Nor does it, further,

possess any advantage over the Lagrangian form of

D'Alembert's principle in respect of competency to com-

prehend both statical 0/2// dynamical problems, as has

been before pointed out (page 342).

Thephys- There is no need of seeking a mystical or metaphys-

of
a
the p

s

rfn- /Wz/ reason for Gauss's principle. The expression " least
Clpie '

constraint" may seem to promise something of the

sort ; but the name proves nothing. The answer to the

question, "Tn what does this constraint consist ? " can-

not be derived from metaphysics, but must be sought

in the facts. The expression (2) of page 353, or (4) of

page 361, which is made a minimum, represents the

work done in an element of time by the deviation of the

constrained motion from the free motion. This work,

the work due to the constraint, is less for the motion

actually performed than for any other possible motion.



THE EXTENSION OF THE PRINCIPLES. 363

Once we have recognised work as the factor deter- Roieof the

f . . . factor work.
mmative 01 motion, once we have grasped the mean-

ing of the principle of virtual displacements to be, that

motion can never take place except where work can be

performed, the following converse truth also will in-

volve no difficulty, namely, that all the work that can

be performed in an element of time actually is per-

formed. Consequently, the total diminution of work

due in an element of time to the connections of the

system's parts is restricted to the portion annulled by

the counter-work of those parts. It is again merely a

new aspect of a familiar fact with which we have here

to deal.

This relation is displayed in the very simplest cases. The foun-

.
dations of

.Let there be two masses ;;/ and ;// at A, the one 1m- the princi-

, . , r . . . , pie recog-
pressed with a force /, the other with nisabie in

n thesim-
the torce q. If we connect the two, we ,

tt yff> piest cases,

shall have the mass 2 ;;/ acted on by a

resultant force r. Supposing the spaces

described in an element of time by the

free masses to be represented by AC,
A B, the space described by the con-

joint, or double, mass will be AO =
\A D. The deviation, or constraint,

is m(pB* + OC 2
). It is less than

it would be if the mass arrived at the end of the ele-

ment of time in M or indeed in any point lying out-

side of B C, say JV, as the simplest geometrical con-

siderations will show. The deviation is proportional

to the expression p 2
-f- q

2 -\- ipq cos 8/2, which in the

case of equal and opposite forces becomes 2/ 2
, and in

the case of equal and like-directed forces zero.

Two forces p and q act on the same mass. The
force q we resolve parallel and at right angles to the

Fig. 187.
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Even in the direction of / in r and s. The work done in an element
principle of . . - r i r j
the compo- of time is proportional to the squares ot the iorces, and
sition of . -1 1 i o i o
forces its if there be no connections is expressible by/ 2 -\- q- =
properties ... ,

are found. p 2 -{- r 2 -j- s 2
. If now r act directly counter to the

force /, a diminution of work will be effected and the

sum mentioned becomes (p— r) 2
-f- s 2

. Even in the

principle of the composition of forces, or of the mutual

independence of forces, the properties are contained

which Gauss's principle makes use of. This will best

be perceived by imagining all the accelerations simul-

taneously performed. If we discard the obscure verbal

form in which the principle is clothed, the metaphysical

impression which it gives also vanishes. We see the

simple fact ; we are disillusioned, but also enlightened.

The elucidations of Gauss's principle here presented

are in great part derived from the paper of SchefHer

> cited above. Some of his opinions which I have been

unable to share I have modified. We cannot, for ex-

ample, accept as new the principle which he himself

propounds, for both in form and in import it is identical

with the D'Alembert-Lagrangian.

VIII.

THE PRINCIPLE OF LEAST ACTION.

Theorig- i. Maupertuis enunciated, in 1747, a principle

scureform which he called " le principe de la moindre quantite d'ac-

cip\e
e
o^
rm

Hon" the principle of least action. He declared this
lon

' principle to be one which eminently accorded with- the

wisdom of the Creator. He took as the measure of

the "action" the product of the mass, the velocity,

and the space described, or mvs. Why, it must be

confessed, is not clear. By mass and velocity definite

quantities may be understood ; not so, however, by
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space, when the time is not stated in which the space

is described. If, however, unit of time be meant, the

distinction of space and velocity in the examples treated

by Maupertuis is, to say the least, peculiar. It appears

that Maupertuis reached this obscure expression by an

unclear mingling of his ideas of vis viva and the prin-

ciple of virtual velocities. Its indistinctness will be

more saliently displayed by the details.

2. Let us see how Maupertuis applies his principle. Determina-
r x r r

. . tion of the

If M, vi be two inelastic masses, Cand c their velocities laws of im-
pact by this

before impact, and u their common velocity after im- principle.

pact, Maupertuis requires, (putting here velocities for

spaces,) that the " action " expended in the change of

the velocities in impact shall be a minimum. Hence,

M(C— u) 2 + ;;/ (?— u)
2 is a minimum ; that is,

M(C— u) + m(c— u) = 0; or

_ MC + vi c
U ~~ M + vi'

For the impact of elastic masses, retaining the same

designations, only substituting Fand v for the two ve-

locities after impact, the expression M{C— V) 2 +
m(c— v) 2 is a minimum; that is to say,

M(C— V)dV+ m(c— v)dv = Q (1)

In consideration of the fact that the velocity of ap-

proach before impact is equal to the velocity of reces-

sion after impact, we have

C—c = — (F—7>) or

C+ F—(c+v) = (2)

and
dV—dv = * (3)

The combination of equations (1), (2), and (3)

readily gives the familiar expressions for V and v.

These two cases may, as we see, be viewed as pro-
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cesses in which the least change of vis viva by reaction

takes place, that is, in which the least counter-work is

done. They fall, therefore, under the principle of

Gauss.

Mauper- q. Peculiar is Maupertuis's deduction of the law of
tuis's de-

J r
.

J

auction of the lever. Two masses M and ;;/ (Fig. 188) rest on a
the law of

. ...
the lever by bar a, which the fulcrum divides into the portions
this prin-
ciple, x and a— x. If the bar be set in rotation, the veloci-

ties and the spaces described will be proportional to

the lengths of the lever-arms, and Mx 2 -\- m{a— x) 2

is the quantity to be made a minimum, that is Mx —
m (a — x) = ; whence x = ma/M -f- m,—a condition

that in the case of equilib-

A rium is actually fulfilled. In

M m criticism of this, it is to be

a _x remarked, first, that masses

Fig. 188. not subject to gravity or

other forces, as Maupertuis

here tacitly assumes, are always in equilibrium, and,

secondly, that the inference from Maupertuis's deduc-

tion is that the principle of least action is fulfilled

only in the case of equilibrium, a conclusion which it

was certainly not the author's intention to demonstrate.

Thecorrec- If it were sought to bring this treatment into ap-

pertuis's proximate accord with the preceding, we should have

to assume that the heavy masses M and m constantly

produced in each other during the process the least

possible change of vis viva. On that supposition, we
should get, designating the arms of the lever briefly by

a, b, the velocities acquired in unit of time by u, v, and

the acceleration of gravity by g, as our minimum ex-

pression, M{g— u) 2
-J- m{g— v) 2

; whence M(g— u)

du -f- m(g— v)dv = 0. But in view of the connection

of the masses as lever,

deduction.
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— =— T , and
a b

du = , dv
;

b

whence these equations correctly follow

Ma— mb _ Ma-
il =— b -

mb
Ma 2 + mb 2 *' Ma 2 + mb 2 *'

and for the case of equilibrium, where n = v = 0,

Ma — m b = 0.

Thus, this deduction also, when we come to rectify

it, leads to Gauss's principle.

4. Following the precedent of Fermat and Leib- Treatment
. . . .

of the mo-
nitz, Maupertuis also treats by his method the motion non of light

by the prin-

of light. Here again, however, —*- ~ c

he employs the notion "least ac-

tion" in a totally different sense.

The expression which for the

case of refraction shall be a min-

imum, is m . AR -\- n . RB,
where AR and RB denote the

paths described by the light in

the first and second media re-

spectively, and m and n the corresponding velo-

cities. True, we really do obtain here, if R be de-

termined in conformity with the minimum condition,

the result sin^/sin/? = njm = const. But before, the

"action" consisted in the change of the expressions

mass X velocity X distance ; now, however, it is con-

stituted of the sum of these expressions. Before, the

spaces described in unit of time were considered ; in

the present case the total spaces traversed are taken.

Should not m. AR— n. RB or y?i— n)(AR— RB)
be taken as a minimum, and if not, why not ? But

Fig. 18
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even if we accept Maupertuis's conception, the recip-

rocal values of the velocities of the light are obtained,

and not the actual values,

character!- It will thus be seen that Maupertuis really had no

Mauper- principle, properly speaking, but only a vague form-

cipie.

pnn
"

ula, which was forced to do duty as the expression of

different familiar phenomena not really brought under

one conception. I have found it necessary to enter

into some detail in this matter, since Maupertuis's per-

formance, though it has been unfavorably criticised by

all mathematicians, is, nevertheless, still invested with

a sort of historical halo. It would seem almost as if

something of the pious faith of the church had crept

into mechanics. However, the mere endeavor to gain

a more extensive view, although beyond the powers of

the author, was not altogether without results. Euler,

at least, if not also Gauss, was stimulated by the at-

tempt of Maupertuis.

Euier'scon- 5. Euler's view is, that the purposes of the phe-

tothS°sub- nomena of nature afford as good a basis of explana-
JCCt '

tion as their causes. If this position be taken, it will

be presumed a priori that all natural phenomena pre-

sent a maximum or minimum. Of what character this

maximum or minimum is, can hardly be ascertained

by metaphysical speculations. But in the solution of

mechanical problems by the ordinary methods, it is

possible, if the requisite attention be bestowed on the

matter, to find the expression which in all cases is

made a maximum or a minimum. Euler is thus not

led astray by any metaphysical propensities, and pro-

ceeds much more scientifically than Maupertuis. He

seeks an expression whose variation put = gives the

ordinary equations of mechanics.

For a single body moving under the action of forces
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Euler finds the requisite expression in the formula The form

Cv ds, where ds denotes the element of the path and principle
*J .-, ... , r^, . . ., assumed ia
v the corresponding velocity. This expression is smaller Euier's

for the path actually taken than for any other infinitely

adjacent neighboring path between the same initial

and terminal points, which the body may be constrained

to take. Conversely, therefore, by seeking the path that

makes Cv ds sl minimum, we can also determine the

path. The problem of minimising Cv ds is, of course,

as Euler assumed, a permissible one, only when v de-

pends on the position of the elements ds, that is to

say, when the principle of vis viva holds for the forces,

or a force-function exists, or what is the same thing,

when v is a simple function of coordinates. For a mo-
tion in a plane the expression would accordingly as-

sume the form

A dx

In the simplest cases Euier's principle is easily veri-

fied. If no forces act, v is constant, and the curve of

motion becomes a straight line, for which Cv ds =
v C ds is unquestionably shorter than for any other

curve between the same terminal points.

Also, a body moving on a curved surface

without the action of forces or friction,

preserves its velocity, and describes on

the surface a shortest line.

The consideration of the motion of a

projectile in a parabola ABC (Fig. 190)

will also show that the quantity Cv ds

is smaller for the parabola than for any

other neighboring curve ; smaller, even,

than for the straight line ABC between the same ter-

minal points. The velocity, here, depends solely on the

Euier's
principle
applied to

r the motion
of a projec-
tile.

Fig. 190
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Mathemat- vertical space described by the body, and is therefore

opmenTof" the same for all curves whose altitude above OC is the
this case.

same< If we divide the curves by a system of horizontal

straight lines into elements which severally correspond,

the elements to be multiplied by the same v's, though

in the upper portions smaller for the straight line AD
than for A B, are in the lower portions just the reverse

;

and as it is here that the larger v's come into play, the

sum upon the whole is smaller for A B C than for the

straight line.

Putting the origin of the coordinates at A, reckon-

ing the abscissas x vertically downwards as positive,

and calling the ordinates perpendicular thereto y, we

obtain for the expression to be minimised

where g denotes the acceleration of gravity and a the

distance of descent corresponding to the initial velocity.

As the condition of minimum the calculus of variations

gives

V
~dy

= C or

dy C
y = —=— ;.—=tttz: or
dx Vlg{a + x)—C*

/,

Cdx

and, ultimately,

y = - i/2g (a + x)— ~C* + C >
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where C and C denote constants of integration that

pass into C= V iga and C'= 0, if for x= 0, dx/dy=
and y = be taken. Therefore, y = 2 i/# .ar. By this

method, accordingly, the path of a projectile is shown

to be of parabolic form.

6. Subsequently, Lagrange drew express attention The addi-

to the fact that Euler's principle is applicable only in grange and

cases in which the principle of vis viva holds. Jacobi

pointed out that we cannot assert that Cv ds for the ac-

tual motion is a minimum, but simply that the variation of

this expression, in its passage to an infinitely adjacent

neighboring path, is = 0. Generally, indeed, this con-

dition coincides with a maximum or minimum, but it

is possible that it should occur without such; and the

minimum property in particular is subject to certain

limitations. For example, if a body, constrained to

move on a spherical surface, is set in motion by some

impulse, it will describe a great circle, generally a

shortest line. But if the length of the arc described

exceeds 180 , it is easily demonstrated that there exist

shorter infinitely adjacent neighboring paths between

the terminal points.

7. So far, then, this fact only has been pointed out, Euler's

. . expression

that the ordinary equations of motion are obtained by but one of

. . . manv which
equating the variation of ( v ds to zero. But since the give "the

. P . 1 . ... r 1 •
1

equations
properties of the motion 01 bodies or 01 their paths may of motion.

always be defined by differential expressions equated

to zero, and since furthermore the condition that the

variation of an integral expression shall be equal to

zero is likewise given by differential expressions equated

to zero, unquestionably various other integral expres-

sions may be devised that give by variation the ordi-

nary equations of motion, without its following that the
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integral expressions in question must possess on that

account any particular physical significance.

Yet the ex- 8. The striking fact remains, however, that so simple
pression
must pos- an expression as I v as does possess the property men-
sess a phys- . t/ #11 - ,

icai import, tioned, and we will now endeavor to ascertain its phys-

ical import. To this end the analogies that exist be-

tween the motion of masses and the motion of light, as

well as between the motion of masses and the equilib-

rium of strings—analogies noted by John Bernoulli

and by Mobius—will stand us in stead.

A body on which no forces act, and which there-

fore preserves its velocity and direction constant, de-

scribes a straight line. A ray of light passing through

a homogeneous medium (one having everywhere the

same index of refraction) describes a straight line. A
string, acted on by forces at its extremities only, as-

sumes the shape of a straight line.

Elucidation A body that moves in a curved path from a point
of this im- • t-» i i 1 / \ •

port by the A to a point B and whose velocity v = <p(x, y, z) is a

mass, the function of coordinates, describes between A and B a
motion of a . r . . . .

ray of light, curve for which generally / v as is a minimum. A ray

equilibrium of light passing from A to B describes the same curve,

if the refractive index of its medium, n= cp(x, y, z),

is the same function of coordinates ; and in this case

Cnds is a minimum. Finally, a string passing from

*A to B will assume this curve, if its tension S=
<p (x, y, z) is the same above-mentioned function of co-

ordinates ; and for this case, also, CSds is a minimum.

The motion of a mass may be readily deduced from

the equilibrium of a string, as follows. On an element

ds of a string, at its two extremities, the tensions S, S'

act, and supposing the force on unit of length to be P,

in addition a force P. ds. These three forces, which

we shall represent in magnitude and direction by BA,
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BC% BD (Fief, iqiY are in equilibrium. If now, a body, The motion
' v ° -

7 J x
. ii- of a mass

with a velocity v represented in magnitude and direc- deduced
J r from the

tion bv AB, enter the element of the path ds, and re- equilibrium
J

.
of a string.

ceive within the same the velocity component Bp =
— BD, the body will proceed on-

ward with the velocity v' = BC.

Let Q be an accelerating force

whose action is directly opposite

to that of B; then for unit of time

the acceleration of this force will

be Q, for unit of length of the

string Q/v, and for the element

of the string (Q/v)ds. The body will move, therefore,

in the curve of the string, if we establish between the

forces B and the tensions S, in the case of the string,

and the accelerating forces Q and the velocity v in the

case of the mass, the relation

Fig. 191.

P\ Q= S:v.

The minus sign indicates that the directions of P and

Q are opposite.

A closed circular string is in equilibrium when be- ^^"^
tween the tension S of the string, everywhere constant, closed

and the force P falling radially outwards on unit of

length, the relation P= S/r obtains, where r is the

radius of the circle. A body will move with the con-

stant velocity v in a circle, when between the velocity

and the accelerating force Q acting radially inwards

the relation

Q = or Q obtains.

A body will move with constant velocity v in any curve

when an accelerating force Qz=v 2 /r constantly acts
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on it in the direction of the centre of curvature of each

element. A string will lie under a constant tension £
in any curve if a force P= S/r acting outwardly from

the centre of curvature of the element is impressed on

unit of length of the string.

The deduc- No concept analogous to that of force is applicable
tion of the r °

.

motion of to the motion of light. Consequently, the deduction of
light from

. .

the motions the motion of light from the equilibrium of a string or
of masses

.

°
and the the motion of a mass must be differently effected. A
equilibrium
of strings, mass, let us say, is moving with the velocity AB — v.

(Fig. 192.) A force in the direction

BD is impressed on the mass which

produces an increase of velocity BE,
so that by the composition of the ve-

locities BC = AB and BE the new
velocity BE= v is produced. If we
resolve the velocities v, 7/ into com-

ponents parallel and perpendicular to

the force in question, we shall per-

ceive that the parallel components alone

are changed by the action of the force.

This being the case, we get, denoting

by k the perpendicular component, and by a and a'

the angles v and v' make with the direction of the

Fig. 192.

force,

v sin a

sin a or

sin a 7'

sin a' v
'

If, now, we picture to ourselves a ray of light that

penetrates in the direction of v a refracting plane at

right angles to the direction of action of the force, and

thus passes from a medium having the index of refrac-
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tion ;/ into a medium having the index of refraction n', Develop-
. . .

mentor' this

where 77/71 = vjv , this ray of light will describe the illustration.

c an:e path as the body in the case above. If, there-

fore, we wish to imitate the motion of a 77iass by the

motion of a ray of light (in the same curve), we must

everywhere put the indices of refraction, n, proportio7ial

to the velocities. To deduce the indices of refraction

from the forces, we obtain for the velocity

d[—\z=z Pdq, and

for the index of refraction, by analogy,

d
(y)

= Pdq,

where P denotes the force and dq a distance-element

in the direction of the force. If ds is the element of

the path and a the angle made by it with the direction

of the force, we have then

/V' 2
\d (

9
= P cos a . ds

d \ vy) = ^cosa . ds.

For the path of a projectile, under the conditions above

assumed, we obtained the expression y = 2 V ax. This

same parabolic path will be described by a ray of light,

if the law n = \/Z g\a~^\- x) be taken as the index of

refraction of the medium in which it travels.

9. We will now more accurately investigate the Relation of,..,... ... the mini-
manner m which this minimum property is related to mum prop-

f 1 t 1 r s-r*' erty to tne
the form 01 the curve. .Let us take, first, (rig. 193) a form of

curves
broken straight line ABC, which intersects the straight

line MN9
put AB = s, BC=s', and seek the condition

that makes vs -f- v's a minimum for the line that passes
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and v areFirst, de- through the fixed points A and B, where
duction of
the mini- supposed to have different, though constant, values
mum condi-
tion. above and below MN. If we displace the point B an

infinitely small distance to D, the new line through A
and C will remain parallel to the original one, as the

drawing symbolically shows. The expression rs -\- v's

is increased hereby by an amount

— V7?isma -\- 7 }'ms\na,

where m= DB. The alteration is accordingly propor-

tional to — z>sin a-\- 7/ sin a', and the condition of

minimum is that

, . , ~ sin or v'— v sin a -i- v smff = 0, or -
. - = —

.

sin a v

Fig. i93- I'i«. 191=

If the expression s/?> -f- s jv' is to be made a minimum,

we have, in a similar way,

sin a v

sin a v
r

Second, the If, next, we consider the case of a string stretched

of this^on- in the direction ABC, the tensions of which S and S'

equmbrium are different above and below MN, in this case it is
o as rmg.

^^ minimum of Ss -\- S's' that is to be dealt with. To
obtain a distinct idea of this case, we may imagine the
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motion of a

ray of light.

string stretched once between A and B and thrice be-

tween B and C, and finally a weight P attached. Then

S=P and S' — 3 P. If we displace the point B a dis-

tance m, any diminution of the expression Ss -\- S's'

thus effected, will express the increase of work which

the attached weight P performs. If — Sm sin a -f

S'm sin a'= 0, no work is performed. Hence, the mini-

mum of Ss -f- S's' corresponds to a maximum of work.

In the present case the principle of least action is sim-

ply a different form of the principle of virtual displace-

ments.

Now suppose that ABC is a ray of light, whose ve- Third, the
1 r J ° application

locities v and v above and below MAT are to each other of this con-
dition tothe

as 3 to 1. The motion of light be-

tween two points A and B is such

that the light reaches B in a mini-

mum of time. The physical reason

of this is simple. The light travels

from A to B, in the form of ele-

mentary waves, by different routes.

Owing to the periodicity of the light,

the waves generally destroy each

other, and only those that reach the

designated point in equal times, that is, in equal phases,

produce a result. But this is true only of the waves

that arrive by the minimum path and its adjacent neigh-

boring paths. Hence, for the path actually taken by

the light s/v + s'/v is a minimum. And since the in-

dices of refraction n are inversely proportional to the

velocities v of the light, therefore also 11s -f- n's' is a

minimum.

In the consideration of the motion of a mass the con-

dition that vs -f- v's' shall be a minimum, strikes us as

something novel. (Fig. 195.) If a mass, in its passage

Fig- 195-
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Fourth, its through a plane MN, receive, as the result of the action

*o themo-
11

of a force impressed in the direction DB, an increase of

mass. velocity, by which v, its original velocity, is made v , we
have for the path actually taken by the mass the equa-

tion v sin a = v sin a ' = k. This equation, which is also

the condition of minim inn, simply states that only the ve-

locity-compone?it parallel to the direction of the force is

altered, but that the component k at right angles thereto re-

mains unchanged. Thus, here also, Euler's principle

simply states a familiar fact in a new form. (See p. 575.)

Form of the io. The minimum condition — v sin a -f- v' sin a'=

conduion may also be written, if we pass from a finite broken

L
P
cur

C

v

a

e s.

e

straight line to the elements of curves, in the form

— v sin a -\- (v -f dii) sin (or + ^a) =
or

d(v sin a) =
or, finally,

v sin a — const.

In agreement with this, we obtain for the motion

of light

d (n sin a) = 0, n sin a = const,

7
/ sin a \ „ sin a

d - = 0, - = const,

{ V ) V

and for the equilibrium of a string

d {S sin a) = 0, S sin a = const.

To illustrate the preceding remarks by an ex-

ample, let us take the parabolic path of a projectile,

where a always denotes the angle that the element of

the path makes with the perpendicular. Let the ve-

locity be v = }/2g(a + x\ and let the axis of thej'-or-

dinates be horizontal. The condition v . sin ex = const,

or V 2g(a -f x) . dy/ds = const, is identical with that

which the calculus of variation gives, and we now know
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Fig. 196.

its simplephysical significance. If we picture to ourselves
^^J"^

011

a string whose tension is S= V igla + x), an arrange- typical
° v J cases by

ment which might be effected by fixing frictionless curvilinear

. .
motions.

pulleys on horizontal parallel rods placed in a vertical

plane, then passing the string through these a sufficient

number of times, and finally attaching

a weight to the extremity of the string,

we shall obtain again, for equilibrium,

the preceding condition, the phys-

ical significance of which is now ob-

vious. When the distances between

the rods are made infinitely small the

string assumes the parabolic form.

In a medium, the refractive index of

which varies in the vertical direction

by the law n = V 2 g{a -f x), or the velocity of light in

which similarly varies by the law v = \/V zg(a + x),

a ray of light will describe a path which is a parabola.

If we should make the velocity in such a medium

v= y
/
2g(a-{-x), the ray would describe a cycloidal path,

for which, not fl
//2g(a -\- x) . ds, but the expression

CdsjVig{a+ x) would be a minimum.

11. In comparing the equilibrium of a string with

the motion of a mass, we may employ in place of a

string wound round pulleys,

a simple homogeneous cord,,

provided we subject the cord

to an appropriate system of

forces. We readily observe

that the systems of forces

that make the tension, or,

as the case may be, the ve-

locity, the same function of coordinates, are differ-

ent. If we consider, for example, the force of gravity,

Fig. 197.
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Hie condi- v = V 2g(a -4- x). A string, however, subjected to the
tions and .

conse- action of gravity, forms a catenary, the tension of
quences of

. .

the pieced- which is given by the formula S= m— nx, where m
ing analo-
gies, and ;/ are constants. The analogy subsisting between

the equilibrium of a string and the motion of a mass is

substantially conditioned by the fact that for a string

subjected to the action of forces possessing a force-

function U, there obtains in the case, of equilibrium

the easily demonstrable equation U -\- S= const. This

physical interpretation of the principle of least action

is here illustrated only for simple cases ; but it may
also be applied to cases of greater complexity, by

imagining groups of surfaces of equal tension, of equal

velocity, or equally refractive indices constructed which

divide the string, the path of the motion, or the path

of the'light into elements, and by making a in such a

case represent the angle which these elements make
with the respective surface-normals. The principle of

least action was extended to systems of masses by La-

grange, who presented it in the form

d2m Cv ds = 0.

If we reflect that the principle of vis viva, which is the

real foundation of the principle of least action, is not

annulled by the connection of the masses, we shall

comprehend that the latter principle is in this case also

valid and physically intelligible.

HAMILTON'S PRINCIPLE.

i. It was above remarked that various expressions

can be devised whose variations equated to zero give

the ordinary equations of motion. An expression of

this kind is contained in Hamilton's principle
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6 C(U+ T)dt = 0, or

\dU-\- 6T)dt-.S{1 0,

The points
of identity
of Hamil-
ton's and
D'Aleni-^
bert's prin-
ciples.

of a wheel
d axle.

where d£7and 6T denote the variations of the work

and the vis viva, vanishing for the initial and terminal

epochs. Hamilton's principle is easily deduced from

D'Alembert's, and, conversely, D'Alembert's from

Hamilton's ; the two are in fact identical, their differ-

ence being merely that of form.*

2. We shall not enter here into any extended in- Hamilton''
principle

vestigation of this subject, but simply exhibit the iden- applied to

.
tne motion

tity of the two principles by an example—
the same that served to illustrate the prin-

ciple of D'Alembert: the motion of awheel

and axle by the over-weight of one of its

parts. In place of the actual motion, wre

may imagine, performed in the same inter-

val of time, a different motion, varying in-

finitely little from the actual motion, but

coinciding exactly with it at the beginning

and end. There are thus produced in every element

of time dt, variations of the work (tf £7) and of the vis

viva (STy, variations, that is, of the values £7 and T
realised in the actual motion. But for the actual mo-

tion, the integral expression, above stated, is = 0, and

may be employed, therefore, to determine the actual

motion. If the angle of rotation performed varies in

the element of time dt an amount a from the angle of

the actual motion, the variation of the work corre-

sponding to such an alteration will be

6U= {PR— Qr) a = Ma.
* Compare, for example, Kirchhoff, Vorlesungen iiber mathcmatische Phy-

sik, Mechanik, p. 25 et seqq., and Jacobi, Vorhsungen iiber Dynamik, p. 58.
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Mathemat- The vis viva, for any given angular velocity go, is
ical devel-
opment of I rD r, 9 n n ^2

this case. T= (FK 2 -j- Qr 2
) -=-,

and for a variation tfci? of this velocity the variation of

the vis viva is

6T= \ {PR 2 + Qr 2
) odSgd.

But if the angle of rotation varies in the element dt an

amount a,

da
6 (& = - and

The form of the integral expression, accordingly, is

/ dt
df = 0.

But as

----- (A^) = -=- or + N—-,

*//
v ; dt .

dt'

therefore,

ff^-^V^+CA^^o.

The second term of the left-hand member, though,

drops out, because, by hypothesis, at the beginning

and end of the motion a = 0. Accordingly, we have

an expression which, since a in every element of time

is arbitrary, cannot subsist unless generally

M- d"= 0.
dt
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Substituting for the symbols the values they represent,

we obtain the familiar equation

doo _ PR—Qr
'It ~'PR^"Q7* g'

D'Alembert's principle gives the equation The same
results ob-

dN\ tained byM — \a = 0, the use of

dt ) D'Alem-
/ bert's prin-

which holds for every possible displacement. We might,
ciple "

in the converse order, have started from this equation,

have thence passed to the expression

and, finally, from the latter proceeded to the same re-

sult

s>
*0

\Ma + N—\dt— (Na) =

f\Ma + AT~j) dt = 0.

3. As a second and more simple example let us illustration

consider the motion of vertical descent. For every by the mo-
1

-

infinitely small displacement s the equation subsists ticai°de^
er"

\_rng— in(dv/dt)~\s = 0, in which the letters retain
scent *

their conventional significance. Consequently, this

equation obtains

H
Cl <iv\
I I nig— ;;/ —- \s . dt = 0,

which, as the result of the relations

(mvs) dv ds
d y - = ;;/ - y s-\- in v -— and

at dt dt



384 THE SCIENCE OF MECHANICS.

> 1

S
V
-T

J- dt = (m 7> s) = 0,
at t n

provided s vanishes at both limits, passes into the form

'o V J

that is, into the form of Hamilton's principle.

Thus, through all the apparent differences of the

mechanical principles a common fundamental same-

ness is seen. These principles are not the expression

of different facts, but, in a measure, are simply views

of different aspects of the same fact.

x.

SOME APPLICATIONS OF THE PRINCIPLES OF MECHANICS TO

HYDROSTATIC AND HYDRODYNAMIC QUESTIONS.

Method of i. We will now supplement the examples which

fKtion* we have given of the application of the principles

on1!qu!d
y

of mechanics, as they applied to rigid bodies, by a

few hydrostatic and hydrodynamic illustrations. We
shall first discuss the laws of equilibrium of a weightless

liquid subjected exclusively to the action of so-called

molecular forces. The forces of gravity we neglect in

our considerations. A liquid may, in fact, be placed

in circumstances in which it will behave as if no forces

of gravity acted. The method of this is due to Pla-

teau.* It is effected by immersing olive oil in a mix-

ture of water and alcohol of the same density as the

oil. By the principle of Archimedes the gravity of the

masses of oil in such a mixture is exactly counterbal-

anced, and the liquid really acts as if it were devoid of

weight.

* Statique experimental et theorique des h'qm'des, 1873.

masses.
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2. First, let us imagine a weightless liquid mass The work of
7 °

1
molecular

free in space. Its molecular forces, we know, act only forces de-
r

. .
pendent on

at very small distances. Taking as our radius the dis- a change in
J ° the liquid's

tance at which the molecular forces cease to exert a superficial
area.

measurable influence, let us describe about a particle

a, b, c in the interior of the mass a sphere—the so-

called sphere of action. This sphere of action is regu-

larly and uniformly filled with other particles. The

resultant force on the central particles a, b, c is there-

fore zero. Those parts only that lie at a distance from

the bounding surface less than the radius of the sphere

of action are in different dynamic conditions from the

particles in the interior. If the radii of curvature of

Fig. 199. Fig. 200.

the surface-elements of the liquid mass be all regarded

as very great compared with the radius of the sphere

of action, we may cut off from the mass a superficial

stratum of the thickness of the radius of the sphere of

action in which the particles are in different physical

conditions from those in the interior. If we convey

a particle a in the interior of the liquid from the posi-

tion a to the position b or c, the physical condition

of this particle, as well as that of the particles which

take its place, will remain unchanged. No work can

be done in this way. Work can be done only when a

particle is conveyed from the superficial stratum into

the interior, or, from the interior into the superficial

stratum. That is to say, work can be done only by a
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change of size of the surface. The consideration whether

the density of the superficial stratum is the same as

that of the interior, or whether it is constant through-

out the entire thickness of the stratum, is not primarily

essential. As will readily be seen, the variation of the

surface-area is equally the condition of the perform-

ance of work when the liquid mass is immersed in a

second liquid, as in Plateau's experiments.

Diminution We now inquire whether the work which by the

fidafarea^ transportation of particles into the interior effects a
due to posi- .... _. . . . . ,•

tivework. diminution of the surface-area is positive or negative,

that is, whether work is performed or work is ex-

pended. If wre put two fluid drops in contact, they

will coalesce of their own accord;

and as by this action the area

of the surface is diminished, it

follows that the work that pro-

duces a diminution of superfi-

Fi 20Ij
cial area in a liquid mass is posi-

tive. Van der Mensbrugghe has

demonstrated this by a very pretty experiment. A
square wire frame is dipped into a solution of soap and

water, and on the soap-film formed a loop of moistened

thread is placed. If the film within the loop be punc-

tured, the film outside the loop will contract till the

thread bounds a circle in the middle of the liquid sur-

face. But the circle, of all plane figures of the same

circumference, has the greatest area ; consequently,

the liquid film has contracted to a minimum.

Consequent The following will now be clear. A weightless

on^quid
1

liquid, the forces acting on which are molecular forces,
equi

1
rmm

w-^ ke
-n equilibrium in all forms in which a system of

virtual displacements produces no alteration of the

liquid's superficial area. But all infinitely small changes
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of form maybe regarded as virtual which, the liquid

admits without alteration of its volume. Consequently,

equilibrium subsists for all liquid forms for which an

infinitely small deformation produces a superficial va-

riation = 0. For a given volume a minimum of super-

ficial area gives stable equilibrium ; a maximum un-

stable equilibrium.

Among all solids of the same volume, the sphere

has the least superficial area. Hence, the form which

a free liquid mass will assume, the form of stable equi-

librium, is the sphere. For this form a maximum of

work is done ; for it, no more can be done If the

liquid adheres to rigid bodies, the form assumed is de-

pendent on various collateral conditions, which render

the problem more complicated.

3. The connection between the size and the form of Mode of de-

termining

the liquid surface may be investigated as follows. We t\

imagine the closed outer sur-

face of the liquid to receive

without alteration of the li-

quid's volume an infinitely

small variation. By two sets of

mutually perpendicular lines
1

Fig. 202.

of curvature, we cut up the

original surface into infinitely small rectangular ele-

ments. At the angles of these elements, on the original

surface, we erect normals to the surface, and determine

thus the angles of the corresponding elements of the

varied surface. To every element dO of the original

surface there now corresponds an element dO' of the

varied surface ; by an infinitely small displacement, 6 n,

along the normal, outwards or inwards, dO passes into

dO' and into a corresponding variation of magnitude.

Let dp, do be the sides of the element dO. For the

ie connec-
tion of the
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The mathe- sides dp' , da of the element dO', then, these relations
matical de-
velopment obtain
of this ,

N

method.
/ S 77

dp' = dp
[

1 ~\

3 77

dq = dqi 1 -f-

where r and / are the radii of curvature of the princi-

pal sections touching the elements of the lines of cur-

vature/, q 9
or the so-called principal radii of curva-

ture.* The radius of curvature of an outwardly convex

element is reckoned as positive, that of an outwardly

concave element as negative, in the usual manner. For

the variation of the element we obtain, accordingly,

- dO = dpdqil + -"
j
( 1 + y)— dpdq.

Neglecting the higher powers of 671 we

get

d.dO = (~
:
+ ~

:i Jdn.dO.

The variation of the whole surface,

then, is expressed by

1

S.dO= dO'

60 - /*+, 6 n. dO 1)

Fig. 203.

Furthermore, the normal displacements

must be so chosen that

fdn.dO = (2)

that is, they must be such that the sum of the spaces

produced by the outward and inward displacements of

* The normal at any point of a surface is cut by normals at infinitely neigh-

boring points that lie in two directions on the surface from the original point,

these two directions being at right angles to each other ; and the distances

from the surface at which these normals cut are the two principal, or extreme,

radii of curvature of the surface.— Trans.
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the superficial elements (in the latter case reckoned as

negative) shall be equal to zero, or the volume remain

constant.

Accordingly, expressions (1) and (2) can be put ^condition

simultaneously = only if i/r + i/r has the same value t^Renerai-

for all points of the surface. This will be readily seen Prions

from the following consideration. Let the elements depends.'

dO of the original surface be symbolically represented

by the elements of the line AX (Fig. 204) and let the

normal displacements 6n be erected as ordinates

thereon in the plane E, the outward displacements up-

wards as positive and the inward displacements down-

wards as negative.

Join the extremities E

of these ordinates so

as to form a curve,

and take the quadra-

ture of the curve,

reckoning the sur-

face above AX as positive and that below it as nega-

tive. For all systems of Sn for which this quadra-

ture = 0, the expression (2) also = 0, and all such

systems of displacements are admissible, that is, are

virtual displacements.

Now let us erect as ordinates, in the plane E\ the

values of i/r + i/r that belong to the elements dO. A

case may be easily imagined in which the expressions

(1) and (2) assume coincidently the value zero. Should,

however, i/r+i/Vhave different values for different

elements, it will always be possible without altering

the zero-value of the expression (2), so to distribute

the displacements Sn that the expression (1) shall be

different from zero. Only on the condition that 1 /r +
1// has the same value for all the elements, is expres-

Fig. 204.
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sion (i) necessarily and universally equated to zero

with expression (2).

The sum Accordingly, from the two conditions (1) and (2) it
which tor \ J \ J

equilibrium follows that 1 /r -f- l/r'= const : that is to say, the sum
must be

.

constantfor of the reciprocal values of the principal radii of curva-
the whole ..

x r
surface. ture, or of the radii of curvature of the principal nor-

mal sections, is, in the case of equilibrium, constant

for the whole surface. By this theorem the dependence
of the area of a liquid surface on its superficial/^/-;;/ is

defined. The train of reasoning here pursued was
first developed by Gauss, * in a much fuller and more
special form. It is not difficult, however, to present

its essential points in the foregoing simple manner.
Application 4. A liquid mass, left wholly to itself, assumes, as
of this gen- J 7 '

erai condi- we have seen, the spherical form, and presents an ab-
intermpted solute minimum of superficial area. The equation

mas-
m

^
1/r -f Vr ' ~ const is here visibly fulfilled in the form
2/R = const, R being the radius of the sphere. If the

free surface of the liquid mass be bounded by two solid

circular rings, the planes of which are parallel to each
other and perpendicular to the line joining their mid-
dle points, the surface of the liquid mass will assume
the form of a surface of revolution. The nature of the

meridian curve and the volume of the enclosed mass
are determined by the radius of the rings R, by the

distance between the circular planes, and by the value

of the expression 1/r -f- 1/r' for the surface of revolu-

tion. When

r ' r' r
~

oo R'

the surface of revolution becomes a cylindrical surface.

For 1/r -f l/r'= 0, where one normal section is con-

* Principia GeneraHa Theories Figura* Fluidorum in Statu ALquilibrii

Gottingen, 1830 ; Werke, Vol. V, 29, Gottingen, 1867.

tion to

intern^
liquid mas-
ses.
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vex and the other concave, the meridian curve assumes

the form of the catenary. Plateau visibly demonstrated

these cases by pouring oil on two circular rings of wire

fixed in the mixture of alcohol and water above men-
tioned.

Now let us picture to ourselves a liquid mass Liquid mas-

bounded by surface-parts for which the expression surfacesare

1/r -f- 1/r' has a positive value, and by other parts cave and

for which the same expression has a negative value, vex

or, more briefly expressed, by convex and concave sur-

faces. It will be readily seen that any displacement

of the superficial elements outwards along the normal

will produce in the concave parts a diminution of the

superficial area and in the convex parts an increase.

Consequently, work is performed when concave surfaces

move outwards and convex surfaces inwards. Work
also is performed when a superficial portion moves
outwards for which 1/r -f 1/r' = -\- a, while simulta-

neously an equal superficial portion for which 1 /r
-f-

1/r' >» a moves inwards.

Hence, when differently curved surfaces bound a

liquid mass, the convex parts are forced inwards and
the concave outwards till the condition 1/r -j- 1/r' =
const is fulfilled for the entire surface. Similarly, when
a connected liquid mass has several isolated surface-

parts, bounded by rigid bodies, the value of the ex-

pression 1/r -f- 1/r' must, for the state of equilibrium

be the same for all free portions of the surface.

For example, if the space between the two circular Experi-
, . r 1 i 1 i

mental
rings m the mixture 01 alcohol and water above re- illustration

ferred to, be filled with oil, it is possible, by the use conditions,

of a sufficient quantity of oil, to obtain a cylindrical

surface whose two bases are spherical segments. The
curvatures of the lateral and basal surfaces will accord-
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ingly fulfil the condition \jR -f- l/oo = 1/p + 1/p, or

p = 27?, where p is the radius of the sphere and R that

of the circular rings. Plateau verified this conclusion

by experiment.

Liquidmas- 5. Let us now study a weightless liquid mass which

iSfhii-
8-

encloses a hollow space. The condition that 1/r + 1/r'

low space. ^^ have the same yalue {or the interior an(j exterior

surfaces, is here not realisable. On the contrary, as

this sum has always a greater positive value for the

closed exterior surface than for the closed interior sur-

face, the liquid will perform work, and, flowing from

the outer to the inner surface, cause the hollow space

to disappear. If, however, the hollow space be occu-

pied by a fluid or gaseous substance subjected to a de-

terminate pressure, the work done in the last-men-

tioned process can be counteracted by the work ex-

pended to produce the compression, and thus equilib-

rium may be produced.

The me- Let us picture to ourselves a liquid mass confined

propertts between two similar and similarly situated surfaces

ot bubbles
- ^ very near each other. A bubble is such

a system. Its primary condition of equi-

librium is the exertion of an excess of

pressure by the inclosed gaseous con-

tents. If the sum 1/r -f-
1/r' has the

value -f a for the exterior surface, it will

have for the interior surface very nearly

a. A bubble, left wholly to itself, will al-

ways assume the spherical form. If we conceive such

a spherical bubble, the thickness of which we neglect,

the total diminution of its superficial area, on the

shortening of the radius r by dr, will be 16m dr. If,

therefore, in the diminution of the surface by Unit

of area the work A is performed, then A . 16 rndr will
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be the total amount of work to be compensated for

by the work of compression p.\r 2 ndr expended by

the pressure / on the inclosed contents. From this

follows \A/r =p ; from which A may be easily calcu-

lated if the measure of r is obtained and / is found by

means of a manometer introduced in the bubble.

An open spherical bubble cannot subsist. If an Open
r 2

.
bubbles.

open bubble is to become a figure of equilibrium, the

sum l/r + l/r' must not only be constant for each of

the two bounding surfaces, but must also be equal for

both. Owing to the opposite curvatures of the sur-

faces, then, l/r + l/r' = 0. Consequently, r = — r

'

for all points. Such a surface is called a minimal sur-

face ; that is, it has the smallest area consistent with

its containing certain closed contours. It is also a sur-

face of zero-sum of principal curvatures ; and its ele-

ments, as we readily see, are saddle-shaped. Surfaces

of this kind are obtained by constructing closed space-

curves of wire and dipping the wire into a solution of

soap and water.* The soap-film assumes of its own

accord the form of the curve mentioned.

6. Liquid figures of equilibrium, made up of thin Plateau's

rr^i i r 1
liquid fig-

films, possess a peculiar property. The work 01 the uresofequi-
7 r

, p i- • j librium.

forces of gravity affects the entire mass ot a liquid
;

that of the molecular forces is restricted to its super-

ficial film. Generally, the work of the forces of grav-

ity preponderates. But in thin films the molecular

forces come into very favorable conditions, and it is

possible to produce the figures in question without

difficulty in the open air. Plateau obtained them by

dipping wire polyhedrons into solutions of soap and

water. Plane liquid films are thus formed, which meet

* The mathematical problem of determining such a surface, when the

forms of the wires are given, is called Plateau's Problem.— Trans.
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one another at the edges of the framework. When
thin plane films are so joined that they meet at a hol-

low edge, the law 1/r -\- A /r' = const no longer holds

for the liquid surface, as this sum has the value zero

for plane surfaces and for the hollow edge a very large

negative value. Conformably, therefore, to the views

above reached, the liquid should run out of the films,

the thickness of which would constantly decrease, and

escape at the edges. This is, in fact, what happens.

But when the thickness of the films has decreased to a

certain point, then, for physical reasons, which are, as

it appears, not yet perfectly known, a state of equilib-

rium is effected.

Yet, notwithstanding the fact that the fundamental

equation l/r-\-\/r' = const is not fulfilled in these fig-

ures, because very thin liquid films, especially films of

viscous liquids, present physical conditions somewhat
different from those on which our original suppositions

were based, these figures present, nevertheless, in all

cases a minimum of superficial area. The liquid films,

connected with the wire edges and with one another,

always meet at the edges by threes at approximately

equal angles of 120 , and by fours in corners at approxi-

mately equal angles. And it is geometrically demon-

strable that these relations correspond to a minimum
of superficial area. In the great diversity of phenom-

ena here discussed but one fact is expressed, namely

that the molecular forces do work,. positive work, when
the superficial area is diminished.

The reason 7- The figures of equilibrium which Plateau ob-

equiHbrhim tained by dipping wire polyhedrons in solutions of

metrical, soap, form systems of liquid films presenting a re-

markable symmetry. The question accordingly forces

itself upon us, What has equilibrium to do with sym-
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metry and regularity ? The explanation is obvious.

In every symmetrical system every deformation that

tends to destroy the symmetry is complemented by an

equal and opposite deformation that tends to restore it.

In each deformation positive or negative work is done.

One condition, therefore, though not an absolutely

sufficient one, that a maximum or minimum of work

corresponds to the form of equilibrium, is thus sup-

plied by symmetry. Regularity is successive symme-

try. There is no reason, therefore, to be astonished

that the forms of equilibrium are often symmetrical

and regular.

8. The science of mathematical hydrostatics arose The figure

. , . , . , , r 7 r of the earth

in connection with a special problem—that of the figure

* 2 ~T
Fig. 206.

of the earth. Physical and astronomical data had led

Newton and Huygens to the view that the earth is an

oblate ellipsoid of revolution. Newton attempted to

calculate this oblateness by conceiving the rotating

earth as a fluid mass, and assuming that all fluid fila-

ments drawn from the surface to the centre exert the

same pressure on the centre. Huygens's assumption

was that the directions of the forces are perpendicular

to the superficial elements. Bouguer combined both

assumptions. Clairaut, finally {TJicorie de la figure

de la terre, Paris, 1743), pointed out that the fulfilment

of both conditions does not assure the subsistence of

equilibrium.
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Clairaut's
point of
view.

Conditions
of equilib-
rium of
Clairaut's
canals.

Clairaut's starting-point is this. If the fluid earth

is in equilibrium, we may, without disturbing its equi-

librium, imagine any portion of it solidified. Accord-

ingly, let all of it be solidified but a canal AB, of any

form. The liquid in this canal must also be in equilib-

rium. But now the conditions which control equilib-

rium are more easily investigated. If equilibrium exists

in every imaginable eanal of this kind, then the entire

mass will be in equilibrium. Incidentally Clairaut re-

marks, that the Newtonian assumption is realised when

the canal passes through the centre (illustrated in Fig.

206, cut 2), and the Huygenian when the canal passes

along the surface (Fig. 206, cut 3).

But the kernel of the problem, according to Clai-

raut, lies in a different view. In all imaginable canals,

Z

M

N

'X

Fig. 207. Fig. 208.

even in one which returns into itself, the fluid must be

in equilibrium. Hence, if cross-sections be made at

any two points M and N of the canal of Fig. 207, the

two fluid columns MPN and MQN must exert on the

surfaces of section at M and N equal pressures. The

terminal pressure of a fluid column of any such canal

cannot, therefore, depend on the length and the form

of the fluid column, but must depend solely on the po-

sition of its terminal points.

Imagine in the fluid in question a canal 'MN of any

form (Fig. 208) referred to a system of rectangular co-
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ordinates. Let the fluid have the constant density p Mathemat-
ical expres-

and let the force-components X, V, Z acting on unit of sion of
±

# #
these con-

maSS of the fluid in the coordinate directions, be func- ditions.and
the conse-

tions of the coordinates x, y, z of this mass. Let the quern gen-
^

. eral condi-

element of length of the canal be called ds, and let its tjon of
liquid equi-

projections on the axes be dx, dy, dz. The force-corn- librium.

ponents acting on unit of mass in the direction of the

canal are then X(dx/ds), Y(dy/ds), Z(dz/ds). Let

q be the cross-section ; then, the total force impelling

the element of mass pqds in the direction ds, is

pq ds
\ ds ds ds

)

This force must be balanced by the increment of pres-

sure through the element of length, and consequently

must be put equal to q . dp. We obtain, accordingly,

dp == p (Xdx + Ydy + Zdz). The difference of pres-

sure (/) between the two extremitiesM and N is found

by integrating this expression from Mto N. But as this

difference is not dependent on the form of the canal

but solely on the position of the extremities M and N,

it follows that p {Xdx + Ydy + Zdz), or, the density

being constant, Xdx + Ydy + Zdz, must be a com-

plete differential. For this it is necessary that

dU dU dU
dx dy dz

where U is a function of coordinates. Hence, according

to Ciairaut, the general condition of liquid equilibrium is,

that the liquid be controlled by forces which can be ex-

pressed as the partial differential coefficients of one and

the same function of coordinates.

9. The Newtonian forces of gravity, and in fact all

central forces,—forces that masses exert in the direc-

tions of their lines of junction and which are functions
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character of the distances between these masses,—possess this

forces property. Under the action of forces of this character
requisite to . .

produce the equilibrium or muds is possible. It we know CI,
equilibrium .

we may replace the first equation by

or

^ = pdU and / = pU -\- const.

The totality of all the points for which U'= const

is a surface, a so-called /<?7'^/ surface. For this surface

also p = const. As all the force-relations, and, as we
now see, all the pressure-relations, are determined by

the nature of the function U, the pressure-relations,

accordingly, supply a diagram of the force-relations,

as was before remarked in page 98.

ciairaut's In the theory of Clairaut, here presented, is con-

germ of the tained, beyond all doubt, the idea that underlies the
doctrine of . . .

potential, doctrine or force-function or potential, which was after-

wards developed with such splendid results by La-

place, Poisson, Green, Gauss, and others. As soon

as our attention has been directed to this property of

certain forces, namely, that they can be expressed as

derivatives of the same function U, it is at once recog-

nised as a highly convenient and economical course to

investigate in the place of the forces themselves the

function U.

If the equation

dp = p (Xdx + Ydy + Zdz) = pdU

be examined, it will be seen that Xdx-\- Ydy-{- Zdz
is the element of the work performed by the forces on

unit of mass of the fluid in the displacement ds, whose

projections are dx, ay, dz. Consequently, if we trans-

port unit mass from a point for which 17= C
x
to an-
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other point, indifferently chosen, for which U'= C ,
character-

'
istics of the

or, more generally, from the surface U= C
t
to the force-func-

tion.

surface U= C
2 , we perform, no matter by what path

the conveyance has been effected, the same amount of

work. All the points of the first surface present, with

respect to those of the second, the same difference of

pressure ; the relation always being such, that

A —A =P(C2 — ci)>

where the quantities designated by the same indices

belong to the same surface.

10. Let us picture to ourselves a group of such character-
istics of

very closely adjacent surfaces, of which every two sue- level, or

cessive ones differ from each other by the same, very tiai, sur-

small, amount of work required to transfer a mass from

one to the other ; in other words, imagine the surfaces

U= C, U= C+dC, U= C+2dC, and so forth.

A mass moving on a level surface evidently per-

forms no work. Hence, every component force in a

direction tangential to the

surface is— ; and the di-

rection of the resultant

forced everywhere normal

to the surface. If we call dn

the element of the normal

intercepted between two

consecutive surfaces,.and/

the force requisite to con-

vey unit mass from the

one surface to the other

through this element, the

work done is/, dn= d C. As dC'is by hypothesis every-

where constant, the force /= dC/dn is inversely pro-

portional to the distance between the surfaces consid-
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ered. If, therefore, the surfaces U are known, the

directions of the forces are given by the elements of a

system of curves everywhere at right angles to these

surfaces, and the inverse distances between the sur-

faces measure the magnitude of the forces. * These sur-

faces and curves also confront us in the other depart-

ments of physics. We meet them as equipotential

surfaces and lines of force in electrostatics and mag-

netism, as isothermal surfaces and lines of flow in the

theory of the conduction of heat, and as equipotential

surfaces and lines of flow in the treatment of electrical

and liquid currents,

illustration ii. We will now illustrate the fundamental idea of

?aufsdoc- Clairaut's doctrine by another, very simple example.

simple
7 a

Imagine two mutually perpendicular planes to cut the
examp e.

^^er at ^g^ angles in the straight lines OX and OY
(Fig. 210). We assume that a force-function exists

Uz=— xy, where x and y are the distances from the

two planes. The force-components parallel to OX and

O Fare then respectively

and

dx

dU

-y

'dy

* The same conclusion may be reached as follows. Imagine a wr.ter pipe

laid from New York to Key West, with its ends turning up vertically, and of

glass. Let a quantity of water be poured into it, and when equilibrium is

attained, let its height be marked on the glass at both ends. These two marks

will be on one level surface. Now pour in a little more water and again mark

the heights at both ends. The additional water in New York balances the

additional water in Key West. The gravities of the two are equal. But their

quantities are proportional to the vertical distances between the marks.

Hence, the force of gravity on a fixed quantity of water is inversely as those

vertical distances, that is, inversely as the distances between consecutive

level surfaces.— Trans.
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~X

The level surfaces are cylindrical surfaces, whose

generating lines are at right angles to the plane of the

paper, and whose directrices, xy = const, are equi-

lateral hyperbolas. The lines of force are obtained by

turning the first mentioned system of curves through

an angle of 45 in the plane of the paper about O. If

a unit of mass pass

from the point r to

by the route rpO, or

rqO, or by any other

route, the work done

is always Op X q.

If we imagine a

closed canal OprqO
filled with a liquid,

the liquid in the ca-

nal will be in equi-

librium. If transverse

sections be made at

any two points, each

section will sustain

pressure.

We will now modify the example slightly. Let the Amodifica-
r . x , Tr , 1

tion of this

forces be X= — y, Y= — a, where a has a constant example,

value. There exists now no function U so constituted

that X= dU/dx and Y= dU/dy ; for in such a case it

would be necessary that dX/dy = dY/dx, which is ob-

viously not true. There is therefore no force-function,

and consequently no level surfaces. If unit of mass
be transported from r to O by the way of p, the work

done is a X Oq. If the transportation be effected by
the route rqO, the work done is a X Oq + Op X O q.

If the canal OprqO were filled with a liquid, the liquid

could not be in equilibrium, but would be forced to

Fig. 210.

at both its surfaces the same
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rotate constantly in the direction OprqO. Currents of

this character, which revert into themselves but con-

tinue their motion indefinitely, strike us as something

quite foreign to our experience. Our attention, how-

ever, is directed by this to an important property of

the forces of nature, to the property, namely, that the

work of such forces may be expressed as a function of

coordinates. Whenever exceptions to this principle

are observed, we are disposed to regard them as appa-

rent, and seek to clear up the difficulties involved.

Torriceiii's 12. We shall now examine a few problems of liquid

o^the^elo- motion. The founder of the theory of hydrodynamics is

qui
y
d°efflux. Torricelli. Torricelli,* by observations on liquids dis-

charged through orifices in the bottom of vessels, dis-

covered the following law. If the time occupied in the

complete discharge of a vessel be divided into n equal

intervals, and the quantity discharged in the last, the

;/
th

, interval be taken as the unit, there will be dis-

charged in the (n— l) th
, the (n— 2)

th
, the O— 3)

th ....

interval, respectively, the quantities 3, 5> 7 - - - • anc*

so forth. An analogy between the motion of falling

bodies and the motion of liquids is thus clearly sug-

gested. Further, the perception is an immediate one,

that the most curious consequences would ensue if the

liquid, by its reversed velocity of efflux, could rise

higher than its original level. Torricelli remarked,

in fact, that it can rise at the utmost to this height,

and assumed that it would rise exactly as high if all

resistances could be removed. Hence, neglecting all

resistances, the velocity of efflux, v, of a liquid dis-

charged through an orifice in the bottom of a vessel is

connected with the height hoi the surface of the liquid

by the equation v = V^gh ; that is to say, the velocity

* De Mot 11 Gravium Projectorum, 1643.
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of efflux is the final velocity of a body freely falling

through the height h, or liquid-head ; for only with

this velocity can the liquid just rise again to the sur-

face.*

Torricelli's theorem consorts excellently with the Varignon's
deduction

rest of our knowledge of natural processes; but weoftheveio-
.

city of

feel, nevertheless, the need of a more exact insight, efflux.

Varignon attempted to deduce the principle from the

relation between force and the momentum generated by

force. The familiar equation ft = mv gives, if by a

we designate the area of the basal orifice, by h the

pressure-head of the liquid, by s its specific gravity,

by g the acceleration of a freely falling body, by v the

velocity of efflux, and by r a small interval of time,

this result

(X V T S
alis . r = . v or v 2 =glt.

g

Here a lis represents the pressure acting during the

time r on the liquid mass avrs/g. Remembering that

v is a final velocity, we get, more exactly,

v
a-r- . rs

alts . r -— Z . v9

and thence the correct formula

?;2 = 2gk.

13. Daniel Bernoulli investigated the motions of

fluids by the principle of vis viva. We will now treat

the preceding case from this point of view, only ren-

dering the idea more modern. The equation which we

employ is ps = mv 2 /2. In a vessel of transverse sec-

tion q (Fig. 211), into which a liquid of the specific

* The early inquirers deduce cheir propositions in the incomplete form of

proportions, and therefore usually put v proportional to \ g'h or \ h.
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Daniel Ber- gravity s is poured till the head h is reached, the surface
noulli's . Hi- i i 1 • • i

treatment sinks, say, the small distance dh, and the liquid mass
of the same ....... , . , , . rr,.

problem, q . ah . s/g is discharged with the velocity v. Ihe work

done is the same as though the weight q . dh . s had

descended the distance h. The path of the motion in

the vessel is not of consequence here. It makes no

difference whether the stratum q . dh

is discharged directly through the

basal orifice, or passes, say, to a

position a, while the liquid at a is

displaced to b, that at b displaced to

c, and that at c discharged. The work

done is in each case q . dh . s . h.

Equating this work to the vis viva of the discharged

liquid, we get

q . dh . s v 2

Fig. 2ii.

dh . s . h or

v = V
/2gh.

The sole assumption of this argument is that all

the work done in the vessel appears as vis viva in the

liquid discharged, that is to say, that the velocities

within the vessel and the work spent in overcoming

friction therein may be neglected. This assumption is

not very far from the truth if vessels of sufficient width

are employed, and no violent rotatory motion is set up.

The law of Let us neglect the gravity of the liquid in the ves-

when pro-
UX

sel, and imagine it loaded by a movable piston, on

the
C
pres^ whose surface-unit the pressure / falls. If the piston

pistons. be displaced a distance dh, the liquid volume q . dh

will be discharged. Denoting the density of the liquid

by p and its velocity by v, we then shall have

v 2

q . p . dh = q . dh . p— , or v=#•
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Wherefore, under the same pressure/ different liquids

are discharged with velocities inversely proportional to

the square root of their density. It is generally sup-

posed that this theorem is directly applicable to gases.

Its form, indeed, is correct ; but the deduction fre-

quently employed involves an error, which we shall

now expose.

14. Two vessels (Fig. 212) of equal cross-sections

are placed side by side and connected with each other

by a small aperture in the base of their dividing walls.

For the velocity of flow through this aperture we ob-

tain, under the same suppositions as before,

dh . S V 2
, /-) Ti -y—r-

q . dh . s (h
1
— h

2 )
=q——- —

-, or v = V ZgV^— //
2 ).

o

If we neglect the gravity of the liquid and imagine

the pressures p x
and p 2

produced by pistons, we shall

similarly have v = V'KP^—J^Jp- For example, if the

pistons employed be loaded with the weights P and

P/2, the weight P will sink the distance h and P/2,

will rise the distance h. The work (P/2)h is thus left,

to generate the vis viva of the effluent fluid.

A gas under such circumstances would behave dif-

ferently. Supposing the gas to flow from the vessel

containing the load Pinto that contain-

ing the load P/2, the first weight will £
fall a distance //, the second, however,

since under half the pressure a gas dou-

bles its volume, will rise a distance 2/1,

so that the work Ph — (P/2) 2/1 =
would be performed. In the case of

gases, accordingly, some additional

work, competent to produce the flow between the vessels

must be performed. This work the gas itself performs,

by expanding, and by overcoming by its force of expan-

The appli-
cation of
this last re-

sult to the
flow of
gases.

~S-£&

dh

zE
HTLiZI

The behav-
iour of a
gas under
the as-

sumed con-
ditions.

Fig. 212.
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The result sion a pressure. The expansive force p and the volume
the same in
form but w of a gas stand to each other in the familiar relation
different in

.gnitude./ze/ = k, where k, so long as the temperature of the

gas remains unchanged, is a constant. Supposing the

volume of the gas to expand under the pressure p by
an amount dw, the work done is

C j , Cdw)pd«> = *)--.

For an expansion from w
Q

to w, or for an increase of

pressure from p Q
to /, we get for the work

Conceiving by this work a volume of gas w
Q

of

density p, moved with the velocity v, we obtain

p
The velocity of efflux is, accordingly, in this case also

inversely proportional to the square root of the density

;

Its magnitude, however, is not the same as in the case

of a liquid,

incom- But even this last view is very defective. Rapid
pleteness of
this view, changes of the volumes of gases are always accom-

panied with changes of temperature, and, consequently

also with changes of expansive force. For this reason,

questions concerning the motion of gases cannot be

dealt with as questions of pure mechanics, but always

involve questions of heat. [Nor can even a thermo-

dynamical treatment always suffice : it is sometimes

necessary to go back to the consideration of molecular

motions.]

15. The knowledge that a compressed gas contains

stored- up work, naturally suggests the inquiry, whether
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this is not also true of compressed liquids. As a mat- Relative
volumes of

ter of fact, every liquid under pressure is compressed, compressed
. . .

gases and
To effect compression work is requisite, which reap- liquids,

pears the moment the liquid expands. But this work,

in the case of the mobile liquids, is very small. Imag-

ine, in Fig. 213, a gas and a mobile liquid of the same

volume, measured by OA, subjected to the same pres-

sure, a pressure of one atmosphere, designated by AB.

If the pressure be reduced to one-half an atmosphere,

the volume of the gas will be doubled, while that of

the liquid will be increased by only about 25 millionths.

The expansive work of the gas is represented by the

surface ABDC, that of the liquid by ABLK, where

Fig. 213.

AK=0'00002$0A. If the pressure decrease till it

become zero, the total work of the liquid is represented

by the surface ABI, where Af= o-oooo$OA, and the

total work of the gas by the surface contained between

AB, the infinite straight line ACEG . . . ., and the

infinite hyperbola branch BDFH . . . . Ordinarily,

therefore, the work of expansion of liquids may be

neglected. There are however phenomena, for ex-

ample, the soniferous vibrations of liquids, in which

work of this very order plays a principal part. In such

cases, the changes of temperature the liquids undergo

must also be considered. We thus see that it is only

by a fortunate concatenation of circumstances that we

are at liberty to consider a phenomenon with any close
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The hydro-
dynamic
principle
of Daniel
Bernoulli.

approximation to the truth as a mere matter of molar

mechanics.

16. We now come to the idea which Daniel Ber-

noulli sought to apply in his work Hydrodynamica, sive

de Viribus et Motibus Fluidorum Commentarii (i738)-

When a liquid sinks, the space through which its cen-

tre of gravity actually descends (descensus actualis) is

equal to the space through which the centre of gravity

of the separated parts affected with the velocities ac-

quired in the fall can ascend (ascensus potentialis). This

idea, we see at once, is identical with that employed

by Huygens. Imagine a vessel filled with a liquid

(Fig. 214); and let its horizontal cross-

section at the distance x from the plane

of the basal orifice, be called/(x). Let

the liquid move and its surface descend

a distance dx. The centre of gravity,

then, descends the distance xf(pc) . dx/M,

whereM= Cf(x) dx. If k is the space of

potential ascent of the liquid in a cross-

section equal to unity, the space of po-

tential ascent in the cross-section f(x) will be k/f(x) 2
,

and the space of potential ascent of the centre of

gravity will be

f(x)

v

—

-fdx

p== -^-^4

)r~ \
f:," r_~.~\

«

_ —-_j\

\F^Hf
Fig. 214.

•X
dx

f{x)

where
M

N--

1M'

J*

dx

For the displacement of the liquid's surface through a

distance dx, we get, by the principle assumed, both

N and k changing, the equation

— xf(x) dx = Ndk -f IzdN.
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This equation was employed by Bernoulli in the solu- The parai-

t
lelism of

tion of various problems. It will be easily seen, that strata.

Bernoulli's principle can be employed with success

only when the relative velocities of the single parts of

the liquid are known. Bernoulli assumes,—an assump-

tion apparent in the formulae,—that all particles once

situated in a horizontal plane, continue their motion

in a horizontal plane, and that the velocities in the

different horizontal planes are to each other in the in-

verse ratio of the sections of the planes. This is the

assumption of the parallelism of strata. It does not, in

many cases, agree with the facts, and in others its

agreement is incidental. When the vessel as compared

with the orifice of efflux is very wide, no assumption

concerning the motions within the vessel is necessary,

as we saw in the development of Torricelli's theorem.

17. A few isolated cases of liquid motion were The water-
1 pendulum

treated by Newton and John Bernoulli. We shall of Newton,

consider here one to which a

familiar law is directly applic-

able. A cylindrical U-tube with

vertical branches is filled with

a liquid (Fig. 215). The length

of the entire liquid column is /.

If in one of the branches the

column be forced a distance x

below the level, the column in

the other branch will rise the distance x, and the

difference of level corresponding to the excursion x

will be 2 x. If a is the transverse section of the tube

and s the liquid's specific gravity, the force brought

into play when the excursion x is made, will be 2 asx,

which, since it must move a mass als/g w\\\ determine

the acceleration (2 asx)/(als/g) = (2g//) x, or, for unit

Fig. 215.
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excursion, the acceleration ig/L We perceive that

pendulum vibrations of the duration

n^k
will take place. The liquid column, accordingly, vi-

brates the same as a simple pendulum of half the length

of the column.

The liquid A similar, but somewhat more general, problem was
pendulum
of John treated by John Bernoulli. Ine two branches ot a
Bernoulli. , . , , . ,- i •

i

cylindrical tube (Fig. 216), curved m any manner, make
with the horizon, at the

points at which the

surfaces of the liquid

move, the angles a

and /3. Displacing one

of the surfaces the dis-

tance x, the other sur-

face suffers an equal

displacement. A difference of level is thus produced

x (sin a -f- sin/?), and we obtain, by a course of reason-

ing similar to that of the preceding case, employing

the same symbols, the formula

Fig. 216.

'-->(;
'

%6
r (sina -f- sin/?)

The laws of the pendulum hold true exactly for the

liquid pendulum of Fig. 215 (viscosity neglected), even

for vibrations of great amplitude ; while for the filar

pendulum the law holds only approximately true for

small excursions.

18. The centre of gravity of a liquid as a whole can

rise only as high as it would have to fall to produce its

velocities. In every case in which this principle appears

to present an exception, it can be shown that the excep-
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n
s

tion is only apparent. One example is Hero's fountain. Hero's
J rjr

.
fountain.

This apparatus, as we know, consists of three vessels,

which may be designated in the descending order as

A, B, C. The water in the open vessel A
falls through a tube into the closed vessel

C ; the air displaced in C exerts a pressure

on- the water in the closed vessel B, and

this pressure forces the water in B in a

jet above A whence it falls back to its

original level. The water in B rises, it is

true, considerably above the level of B,

but in actuality it merely flows by the

circuitous route of the fountain and the

vessel A to the much lower level of C.

Another ap-

parent exception

to the principle

in question is

that of Montgol-

fier's hydraulic

ram, in which the

liquid by its own
gravitational

work appears to

rise considerably

above its original

level. The liquid

flows (Fig. 217)

from a cistern A
through a long

pipe RR and a valve V, which opens inwards, into a

vessel B. When the current becomes rapid enough, the

valve V is forced shut, and a liquid mass m affected with

the velocity v is suddenly arrested in RR, which must

Fig. 217.
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be deprived of its momentum. If this be done in the

time /, the liquid can exert during this time a pressure

q — mvlt, to which must be added its hydrostatical

pressure /. The liquid, therefore, will be able, during

this interval of time, to penetrate with a pressure/ -(- q

through a second valve into a pi/a Heronis, IT, and in

consequence of the circumstances there existing will

rise to a higher level in the ascension-tube ^6* than

that corresponding to its simple pressure /. It is

to be observed here, that a considerable portion of the

liquid must first flow off into B, before a velocity requi-

site to close Vis produced by the liquid's work in RR.
A small portion only rises above the original level

;

the greater portion flows from A into B. If the liquid

discharged from SS were collected, it could be easily

proved that the centre of gravity of the quantity thus

discharged and of that received in B lay, as the result

of various losses, actually below the level of A.

An niustra- The principle of the hydraulic ram, that of the

elucidates transference of work done by a large liquid mass to a
the action .

ofthehy- smaller one, which
draulic ram ,

,
.

O thus acquires a great

vis viva, may be illus-

_____ trated in the following

very simple manner.

Close the narrow

opening of a funnel

\ and plunge it, with its

wide opening down-

wards, deep into a

large vessel of water. If the finger closing the upper

opening be quickly removed, the space inside the

funnel will rapidly fill with water, and the surface of the

water outside the funnel will sink. The work performed

Fig. 218.
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is equivalent to the descent of the contents of the funnel

from the centre of gravity S of the superficial stratum

to the centre of gravity S' of the contents of the fun-

nel. If the vessel is sufficiently wide the velocities in

it are all very small, and almost the entire vis viva is

concentrated in the contents of the funnel. If all the

parts of the contents had the same velocities, they

could all rise to the original level, or the mass as a

whole could rise to the height at which its centre of

gravity was coincident with S. But in the narrower

sections of the funnel the velocity of the parts is

greater than in the wider sections, and the former

therefore contain by far the greater part of the vis

viva. Consequently, the liquid parts above are vio-

lently separated from the parts below and thrown

out through the neck of the funnel high above the

original surface. The remainder, however, are left

considerably below that point, and the centre of grav-

ity of the whole never as much as reaches the original

level of S.

19. One of the most important achievements of Hydrostatic

Daniel Bernoulli is his distinction of hydrostatic and dynamic

/ 7 j tu pressure.
hydrodynamic pressure. I he pressure

which liquids exert is altered by motion
;

and the pressure of a liquid in motio?i

may, according to the circumstances, be

greater or less than that of the liquid at rest

with the same arrangement of parts. We
will illustrate this by a simple example.

The vessel A, which has the form of a body

of revolution with vertical axis, is kept

constantly filled with a frictionless liquid, so that its

surface at mn does not change during the discharge

at kl. We will reckon the vertical distance of a particle
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Determina- from the surface ;// n downwards as positive and call

pressures it z. Let us follow the course of a prismatic element of

acting in H- volume, whose horizontal base-area is a and height ft,
quids in . . _ .

,
,

motion. m its downward motion, neglecting, on the assump-

tion of the parallelism of strata, all velocities at right

angles to z. Let the density of the liquid be p, the

velocity of the element v, and the pressure, which is

dependent on z, p. If the particle descend the dis-

tance dz, we have by the principle of vis viva

a(3pd{^ = a(3pgdz-a
d
£/3dz (1)

that is, the increase of the vis viva of the element is

equal to the work of gravity for the displacement in

question, less the work of the forces of pressure of the

liquid. The pressure on the upper surface of the element

is ap, that on the lower surface is a \_p + (dp/dz)fi~\.

The element sustains, therefore, if the pressure in-

crease downwards, an upward pressure a (dp/dz)fi ;

and for any displacement dz of the element, the work

a(dp/dz)fidz must be deducted. Reduced, equation

(i) assumes the form

p . d[*j) = pgdz —— dz

and, integrated, gives

p • ~ = pgz —p + const (2)

If we express the velocities in two different hori-

zontal cross-sections a
x
and a

2
at the depths z

t
and z

2

below the surface, by v 19 v
2 , and the corresponding

pressures by/
1 , p 2 , we may write equation (2) in the

form

-^.(vl--vl) = pg(z
1
-z

2 ) + (j 2
--p

i )
. (3)
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Taking for our cross-section a
1

the surface, z
A
=0, Thehydro-

a 1
• r 1 • • 1 n dynamic

p — ; and as the same quantity of liquid flows through pressure
«, . . r

varies with
all cross-sections in the same interval of time, a. v. := the circun'ri stances of
a
2
v
2

. Whence, finally, the motion

P „.9. \"2
2

The pressure p 2
of the liquid in motion (the hydro-

dynamic pressure) consists of the pressure pgz
2
of the

liquid at rest (the hydrostatic pressure) and of a pres-

sure (p/2)z'2[(,2| — a X)l<i%\ dependent on the density,

the velocity of flow, and the cross-sectional areas. In

cross-sections larger than the surface of the liquid, the

hydrodynamic pressure is greater than the hydrostatic,

and vice versa.

A clearer idea of the significance of Bernoulli's illustration

• 1 1 i'ii- • • 1 1 • • 1 •
of tnese re_

principle may be obtained by imagining the liquid in suits by the

i 1 / 1 1

& ,. H
^ flow of li-

the vessel A unacted on by gravity, and its outflow quids under
pressures

produced by a constant pressure p A
on the surface, produced

by pistons.
Equation (3) then takes the form

/a =/, + 4 ('"?-*!)•

If we follow the course of a particle thus moving, it

will be found that to every increase of the velocity of

flow (in the narrower cross-sections) a decrease of

pressure corresponds, and to every decrease of the ve-

locity of flow (in the wider cross-sections) an increase

of pressure. This, indeed, is evident, wholly aside

from mathematical considerations. In the present case

every change of the velocity of a liquid element must be

exclusively produced by the work of the liquid' s forces

ofpressure. When, therefore, an element enters into

a narrower cross-section, in which a greater velocity

of flow prevails, it can acquire this higher velocity only
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on the condition that a greater pressure acts on its rear

surface than on its front surface, that is to say, only

when it moves from points of higher to points of lower

pressure, or when the pressure decreases in the direc-

tion of the motion. If we imagine the pressures in

a wide section and in a succeeding narrower section

to be for a moment equal, the acceleration of the ele-

ments in the narrower section will not take place ;
the

elements will not escape fast enough ; they will accumu-

late before the narrower section ; and at the entrance

to it the requisite augmentation of pressure will be im-

mediately produced. The converse case is obvious.

Treatment 20. In dealing with more complicated cases, the
of a.liquid .,..., . ,-, -i

• -a u
problem in problems of liquid motion, even though viscosity be
which vis-

cosity and
friction are
considered.

«-] r i
r r* «* ' *

F- ---
~-

_;
hi

k
i!3?l-r_H

7-HZ JU"— hz
—jr.-

- "

h===-._—=Jk-JljL_|L=J

Fig. 220.

neglected, present great difficulties; and when the

enormous effects of viscosity are taken into account,

anything like a dynamical solution of almost every

problem is out of the question. So much so, that al-

though these investigations were begun by Newton,

we have, up to the present time, only been able to

master a very few of the simplest problems of this class,

and that but imperfectly. We shall content ourselves

with a simple example. If we cause a liquid contained

in a vessel of the pressure-head h to flow, not through

an orifice in its base, but through a long cylindrical

tube fixed in its side (Fig. 220), the velocity of efflux
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v will be less than that deducible from Torricelli's law,

as a portion of the work is consumed by resistances

due to viscosity and perhaps to friction. We find, in

fact, that v ~- y/2gh 1 , where h
1
< h. Expressing by /i

t

the velocity-head, and by h
2
the resistance-head, we may

put h = /i
1 -f- /i

2
. If to the main cylindrical tube we

affix vertical lateral tubes, the liquid will rise in the

latter tubes to the heights at which it equilibrates the

pressures in the main tube, and will thus indicate at all

points the pressures of the main tube. The noticeable

fact here is, that the liquid-height at the point of influx

of the tube is = //
2 , and that it diminishes in the direc-

tion of the point of outflow, by the law of a straight

line, to zero. The elucidation of this phenomenon is

the question now presented.

Gravity here does not act directly on the liquid in The condi-

. 111 1 1 rr 1
tions of the

the horizontal tube, but all effects are transmitted to it perform-

1 r t 1 • t r
ance ot

by the pressure of the surrounding parts. It we imag-work in
Slich C3.SCS,

ine a prismatic liquid element of basal area a and

length /3 to be displaced in the direction of its length

a distance dz, the work done, as in the previous case, is

-a d
f-f}dz = -a(i

d
f-dz.

dz dz

For a finite displacement we have

Ii

Work is done when the element of volume is displaced

from a place of higher to a place of lower pressure.

The amount of the work done depends on the size of

the element of volume and on the difference of pressure

at the initial and terminal points of the motion, and

not on the length and the form of the path traversed.
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The conse-
quences of
these con-
ditions.

If the diminution ot pressure were twice as rapid in

one case as in another, the difference of the pressures

on the front and rear surfaces, or the force of the work,

would be doubled, but the space through which the

work was done would be halved. The work done would

remain the same, whether done through the space ab

or ac of Fig. 221.

Through every cross-section q of the horizontal tube

the liquid flows with the same velocity v. If, neglect-

ing the differences of velocity in the same cross-section,

we consider a liquid element which exactly fills the

section q and has the length (3, the vis viva q (3 p(v 2
/2)

of such an element will persist unchanged throughout

its entire course in the tube.

This is possible only provided

the vis viva consumed by friction

is replaced by the work of the

liquid's forces ofpressure. Hence,

in the direction of the motion

of the element the pressure

must diminish, and for equal distances, to which the

same work of friction corresponds, by equal amounts.

The total work of gravity on a liquid element qfip

issuing from the vessel, is q (3 pgh. Of this the portion

q/3p(v 2 /2) is the vis viva of the element discharged

with the velocity v into the mouth of the tube, or, as

v = ViLghi> the Porti°n 1 fiP8h \' Tne remainder of

the work, therefore, q fipg/i 2 , is consumed in the tube,

if owing to the slowness of the motion W5 neglect the

losses within the vessel.

If the pressure-heads respectively obtaining in the

vessel, at the mouth, and at the extremity of the tube,

are/?, h
2 , 0, or the pressures are/ = hgp, p 2 = /i

2gp,0,

then by equation (1) of page 417 the work requisite to

Fig. 221.
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generate the vis viva of the element discharged into

the mouth of the tube is

v 2

qPp 2
- = vP (/—

/

2 ) = vPsp (/z— h 2) = qfisphv

and the work transmitted by the pressure of the liquid

to the element traversing the length of the tube, is

qPp 2 = qPgph 2 ,

or the exact amount consumed in the tube.

Let us assume, for the sake of argument, that the indirect
demonstra-

pressure does not decrease from / 2 at the mouth to tion of

these con-

zero at the extremity of the tube by the law of a straight sequences.

line, but that the distribution of the pressure is differ-

ent, say, constant throughout the entire tube. The

parts in advance then will at once suffer a loss of ve-

locity from the friction, the parts which follow will

crowd upon them, and there will thus be produced at

the mouth of the tube an augmentation of pressure

conditioning a constant velocity throughout its entire

length. The pressure at the end of the tube can only

be = because the liquid at that point is not prevented

from yielding to any pressure impressed upon it.

If we imagine the liquid to be a mass of smooth a simile

•11 i 1 1
under

elastic balls, the balls will be most compressed at the which these
. phenomena

bottom of the vessel, they will enter the tube in a state may be
. easily con-

of compression, and will gradually lose that state in ceived.

the course of their motion. We leave the further de-

velopment of this simile to the reader.

It is evident, from a previous remark, that the work

stored up in the compression of the liquid itself, is very

small. The motion of the liquid is due to the work of

gravity in the vessel, which by means of the pressure

of the compressed liquid is transmitted to the parts in

the tube.
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a partial An interesting modification of the case just dis-
exemplifi- ........ . . , n , .

cation of cussed is obtained by causing the liquid to now through
the results .....
discussed, a tube composed of a number of shorter cylindrical

tubes of varying widths. The pressure in the direction

of outflow then diminishes (Fig. 222) more rapidly in

the narrower tubes, in which a greater consumption of

work by friction takes place, than in the wider ones.

We further note, in every passage of the liquid into a

Fig. 222.

wider tube, that is to a smaller velocity of flow, an in-

crease of pressure (a positive congestion) ; in every

passage into a narrower tube, that is to a greater velo-

city of flow, an abrupt diminution of pressure (a nega-

tive congestion). The velocity of a liquid element on

which no direct forces act can be diminished or in-

creased only by its passing to points of higher or lower

pressure.



CHAPTER IV.

THE FORMAL DEVELOPMENT OF MECHANICS.

i.

THE ISOPERIMETRICAL PROBLEMS.

i. When the chief facts of a physical science have The formal,
r as distm-

once been fixed by observation, a new period of its pished
J from the de-

develonment begins—the deductive, which we treated ductive, de-
-^ o velopment

in the previous chapter. In this period, the facts are of physical

reproducible in the mind without constant recourse to

observation. Facts of a more general and complex

character are mimicked in thought on the theory that

they are made up of simpler and more familiar obser-

vational elements. But even after we have deduced

from our expressions for the most elementary facts

(the principles) expressions for more common and more

complex facts (the theorems) and have discovered in

all phenomena the same elements, the developmental .

process of the science is not yet completed. The de-

ductive development of the science is followed by its

formal development. Here it is sought to put in a clear

compendious form, or system, the facts to be repro-

duced, so that each can be reached and mentally pic-

tured with the least intellectual effort. Into our rules

for the mental reconstruction of facts we strive to in-

corporate the greatest possible uniformity, so that these

rules shall be easy of acquisition. It is to be remarked,

that the three periods distinguished are not sharply
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separated from one another, but that the processes of

development referred to frequently go hand in hand,

although on the whole the order designated is unmis-

takable.

Theisoperi- 2. A powerful influence was exerted on the formal
metrical
problems, development of mechanics by a particular class of
and ques-

.

tions of mathematical problems, which, at the close of the
maxima
and minima seventeenth and the beginning of the eighteenth cen-

turies, engaged the deepest attention of inquirers.

These problems, the so-called isoperimetrical problems,

will now form the subject of our remarks. Certain

questions of the greatest and least values of quanti-

ties, questions of maxima and minima, were treated by

the Greek mathemati-

cians. Pythagoras is

said to have taught that

the circle, of all plane

figures of a given peri-

Fi 22
meter, has the greatest

area. The idea, too, of a

certain economy in the processes of nature was not

foreign to the ancients. Hero deduced the law of the

reflection of light from the theory that light emitted

from a point A (Fig. 223) and reflected atM will travel

to B by the shortest route. Making the plane of the

paper the plane of reflection, SS the intersection of

the reflecting surface, A the point of departure, B the

point of arrival, and M the point of reflection of the

ray of light, it will be seen at once that the line AMB',
where B' is the reflection of B, is a straight line. The
line AMB' is shorter than the line ANB' , and there-

fore also AMB is shorter than ANB, Pappus held

similar notions concerning organic nature ; he ex-
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plained, for example, the form of the cells of the honey-

comb by the bees' efforts to economise in materials.

These ideas fell, at the time of the revival of the The re-

searches of

sciences, on not unfruitful soil. They were first taken Kepler, Fer-
inat, and

up by Fermat and Roberval, who developed a method Robervai.

applicable to such problems. These inquirers ob-

served,—as Kepler had already done,—that a magni-

tude y which depends on another magnitude x, gen-

erally possesses in the vicinity of its greatest and least

values a peculiar property. Let x (Fig. 224) denote

abscissas and y ordinates. If, while x increases, y pass

through a maximum value, its increase, or rise, will

be changed into a decrease, or

fall ; and if it pass through a

minimum value its fall will.be

changed into a rise. The neigh-

boring values of the maximum
or minimum value, consequently, pig. 224.

will lie very near each other, and

the tangents to the curve at the points in question will

generally be parallel to the axis of abscissas. Hence,

to find the maximum or minimum values of a quan-

tity, we seek the parallel tangents of its curve.

The method of tangents may be put in analytical The
r t^ 1 • • -i rr c

method of

form. For example, it is required to cut on irom a tangents.

given line a a portion x such that the product of the

two segments x and a— x shall be as great as possible.

Here, the product x (a— x) must be regarded as the

quantity j dependent on x. At the maximum value of

y any infinitely small variation of x, say a variation £,

will produce no change in y. Accordingly, the required

value of x will be found, by putting

x(a— x) — {x + <?) (a — x— <?)

or
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. ax -\- a% — . X c? X c, —— cj

mal effect.

= a — 2x B,.

As B, may be made as small as we please, we also get

= a — 2x
;

whence x = a/2.

In this way, the concrete idea of the method of

tangents may be translated into the language of alge-

bra ; the procedure also contains, as we see, the germ

of the differential calculus.

The refrac- Fermat sought to find for the law of the refraction

as°a minf-
fc

of light an expression analogous to that of Hero for

law of reflection. He remarked

that light, proceeding from a

point A, and refracted at a

point My travels to B, not by

the shortest route, but in the

shortest time. If the path AMB
is performed in the shortest

time, then a neighboring path

ANB, infinitely near the real

path, will be described in the

same time. If we draw from N on AM and from M on

NB the perpendiculars NP and MQ, then the second

route, before refraction, is less than the first route by a

distance MP= NM sin a, but is larger than it after

refraction by the distance NQ = NM sin fi. On the

supposition, therefore, that the velocities in the first

and second media are respectively v
1
and v

2 , the time

required for the path AMB will be a minimum when

JVM sin a JVMs'mfi

Fig. 225.

or
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V
A

sin*?

v
2

sin/i

where n stands for the index of refraction. Hero's law

of reflection, remarks Leibnitz, is thus a special case

of the law of refraction. For equal velocities (v
t
= v

2 ),

the condition of a minimum of time is identical with

the condition of a minimum of space.

Huygens, in his optical investigations, applied and Huygens's

ii-i r-i-A • 1 •
completion

further perfected the ideas of Fermat, considering, not of Fermats

1 •-!• 1 1 -1- • c i- 1
researches.

only rectilinear, but also curvilinear motions 01 light,

in media in which the velocity of the light varied con-

tinuously from place to place. For these, also, he

found that Fermat's law obtained. Accordingly, in all

motions of light, an endeavor, so to speak, to produce

results in a minimum of time appeared to be the funda-

mental tendency.

3. Similar maximal or minimal properties were The prob-

brought out in the study 01 mechanical phenomena, brachisto-

1 • 1 -r 1 t-> ii-i i
chrone.

As we have already noticed, John .Bernoulli knew that

a freely suspended chain assumes the form for which

its centre of gravity lies lowest. This idea was, of

course, a simple one for the investigator who first rec-

ognised the general import of the principle of virtual

velocities. Stimulated by these observations, inquir-

ers now began generally to investigate maximal and

minimal characters. The movement received its most

powerful impulse from a problem propounded by John

Bernoulli, in June, 1696*—the problem of the brachis-

tochrone. In a vertical plane two points are situated,

A and B. It is required to assign in this plane the

curve by which a falling body will travel from A to £
in the shortest time. The problem was very ingeniously

* Acta Eruditorum, Leipsic.



B
Fig. 226.

426 THE SCIENCE OF MECHANICS.

solved by John Bernoulli himself ; and solutions were

also supplied by Leibnitz, L'Hopital, Newton, and

James Bernoulli.

John Ber- The most remarkable solution was John Ber-

geniousso- noulli's owm This inquirer remarks that problems
lutionofthe .,., .. . . . ,, . r j_i

problem of of this class have already been solved, not tor the mo-
the brachis- . ....... .

.

. r , - r 1 • 1 j_ tt
tochrone. tion of falling bodies, but for the motion ot light, tie

accordingly imagines the motion of a falling body re-

placed by the motion of

a ray of light. (Comp.

P- 379-) The two points

A and B are supposed

to be fixed in a medium
in which the velocity of

light increases in the

vertical downward direction by the same law as the

velocity of a falling body. The medium is supposed

to be constructed of horizontal layers of downwardly

decreasing density, such that v=~\/2g/i denotes the

velocity of the light in any layer at the distance h be-

low A. A ray of light which travels from A to B un-

der such conditions will describe this distance in the

shortest time, and simultaneously trace out the curve

of quickest descent.

Calling the angles made by the element of the

curve with the perpendicular, or the normal of the

layers, a, a\ a". . . ., and the respective velocities

v, v\

-.....=& = const,

or, designating the perpendicular distances below A
by x, the horizontal distances from A by y, and the arc

of the curve by s9

v". . . • 9
we hlave

sin a

V
= sin^'

V

sin a
'

=
~v"~
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r')

V
= k.

whence follows

dy* =Z J,2 V 21 ds 2 =-.k 2 v 2 (dx 2 + W)
and because v

dx+\

igx ali30

where a —dy = X

a — x

1

2p-^2-

The bra-
chisto-
chrone

a

cycloid.

This is the differential equation of a cycloid, or curve

described by a point in the circumference of a circle of

radius r= a/2 = 1/^gk 2
, rolling on a straight line.

To find the cycloid that passes through A and J3, The con-
J r ° structionof

it is to be noted that all cycloids, inasmuch as they are the cycloid
J * between

produced by similar con-

structions, are similar,

and that if generated by

the rolling of circles on \nZ~^\5--
AD from the point A as ^^T~^\^
origin, are also similarly

. , Fig. 227.

situated with respect to

the point A. Accordingly, we draw through AB a

straight line, and construct any cycloid, cutting the

straight line in B'. The radius of the generating

circle is, say, r\ Then the radius of the generating

circle of the cycloid sought is r= r\AB/AB f

).

This solution of John Bernoulli's, achieved entirely

without a method, the outcome of pure geometrical

fancy and a skilful use of such knowledge as happened

to be at his command, is one of the most remarkable

and beautiful performances in the history of physical

science. John Bernoulli was an aesthetic genius in this

field. His brother James's character was entirely differ-

ent. James was the superior of John in critical power,
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Compari- but m originality and imagination was surpassed by the
son of the . . .„ . ......

n 1

scientific latter. James Bernoulli likewise solved this problem,

of John and though in less felicitous form. But, on the other hand,

aouiii. he did not fail to develop, with great thoroughness, a

general method applicable to such problems. Thus,

in these two brothers we find the two fundamental

traits of high scientific talent separated from one

another,—traits, which in the very greatest natural

inquirers, in Newton, for example, are combined to-

gether. We shall soon see those two tendencies, which

within one bosom might have fought their battles un-

noticed, clashing in open conflict, in the persons of

these two brothers.

Vignette to Leibnitzii et Johannis Bernoullii comercium efiistolicum.

Lausanne and Geneva, Bousquet, 1745.

James Ber- 4. James Bernoulli finds that the chief object of

ma'rks on* research hitherto had been to find the values of a vari-

na
e
tu?e

n6
f

ra
able quantity, for which a second variable quantity,

problem, which is a function of the first, assumes its greatest or

its least value. The present problem, however, is to find



FORMAL DEVELOPMENT. 429

from among an infinite number of curves one which pos-

sesses a certain maximal or minimal property. This, as

he correctly remarks, is a problem of an entirely dif-

ferent character from the other and demands a new
method.

The principles that James Bernoulli employed in The princi-

the solution of this problem (Ac/a Eruditorum, May, ployed in

James Ber-

1697)* are as follows : nouiii'sso-

r • lution.

(1) If a curve has a certain property of maximum
or minimum, every portion or element of the curve has

the same property.

(2) Just as the infinitely adjacent values of the

maxima or minima of a quantity in the ordinary prob-

lems, for infinitely small changes of the independent

variables, are constant, so also is the quantity here to

be made a maximum or minimum for the curve sought,

for infinitely contiguous curves, constant.

(3) It is finally assumed, for the case of the brachis-

tochrone, that the velocity is v ==:']/ 2 g/i, where h de-

notes the height fallen through.

If we picture to ourselves a very small portion ABCrhe essen-

. .... tial fea-

of the curve (Fig. 228), and, imagining a horizontal tures of
James Ber-

line drawn through B, cause

the portion taken to pass into

the infinitely contiguous por-

tion ADC, we shall obtain, by

considerations exactly similar

to those employed in the treat-

ment of Fermat's law, the well-
1 1-1 i

F*s- 228 -

known relation between the

sines of the angles made by the curve-elements with

the perpendicular and the velocities of descent. In

this deduction the following assumptions are made,

* See also his works, Vol. II, p. 768.
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lem

(i), that the part, or element, ABC is brachistochro-

nous, and (2), X\\zXADC\s described in the same time

as ABC. Bernoulli's calculation is very prolix ; but

its essential features are obvious, and the problem is

solved* by the above-stated principles.

The Pro- With the solution of the problem of the brachisto-
gramma of .

james Ber- chrone, Tames Bernoulli, in accordance with the prac-
noulli, or

. ...
theproposi-tice then prevailing among mathematicians, proposed
tion of the . . . •1111?
general iso- the following more general " isoperimetrical problem :

perimetri- . . ,
. r ..

caiprob- << Of all isoperimetrical curves (that is, curves 01 equal

" perimeters or equal lengths) between the same two
" fixed points, to find the curve such that the space

"included (1) by a second curve, each of whose ordi-

" nates is a given function of the corresponding ordi-

" nate or the corresponding arc of the one sought, (2)

" by the ordinates of its extreme points, and (3) by the

"part of the axis of abscissae lying between those ordi-

" nates, shall be a maximum or minimum."

For example. It is required to find the curve BFN,
described on the base BN such, that of all curves of

the same length on BN,
this particular one shall make
the area BZN a minimum,
where PZ=(PF) n

, LM=
(LK) n

, and so on. Let the

relation between the ordi-

nates of BZN and the cor-

responding ordinates ofBFN
be given by the curve BH. To obtain PZ from PF,

draw FGH at right angles to BG, where BG is at right

angles to BN. By hypothesis, then, PZ= GH, and

Fig. 229.

* For the details of this solution and for information generally on the his-

tory of this subject, see Woodhouse's Treatise on Isoperimetrical Problems

and the Calculus of Variations, Cambridge, 1810.— Trans.
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~o for the other ordinates. Further, we put BP= y,

FF= x, PZ= xn
.

Tohn Bernoulli gave, forthwith, a solution cf this John Ber-
J ° ' noulh's sc

problem, in the form

Jx" dx

lution of
this prob-

where a is an arbitrary constant. For n = l,

x dx/x
:
= a— l/tf 2— x 2

,

that is, BFN is a semicircle on BN as diameter, and

the area BZN is equal to the area BFN. For this par-

ticular case, the solution, in fact, is correct. But the

general formula is not universally valid.

On the publication of John Bernoulli's solution,

James Bernoulli openly engaged to do three things :

first, to discover his brother's method ; second, to point

out its contradictions and errors ; and, third, to give the

true solution. The jealousy and animosity of the two

brothers culminated, on this occasion, in a violent and

acrimonious controversy, which lasted till James's

death. After James's death, John virtually confessed

his error and adopted the correct method of his brother.

Tames Bernoulli surmised, and in all probability James Ber-
•j

.
noulh's

correctlv, that Tohn, misled by the results of his re- criticism of
J ' J J

. John Ber-

searches on the catenary and the curve of a sail filled nouiii's so-
J

.
lution.

with wind, had again attempted an indirect solution,

imagining BFN filled with a liquid of variable density

and taking the lowest position of the centre of gravity

as determinative of the curve required. Making the

ordinate PZ—p y
the specific gravity of the liquid in

the ordinate PF= x must be p/x, and similarly in

every other ordinate. The weight of a vertical fila-
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merit is then p . dy/x, and its moment with respect to

FN'is
1 pdy 1

v}
x--—=-jp(ty.

The funda
mental
principle o

James Ber-

noulli's
general so-

lution.

Hence, for the lowest position of the centre of gravity,

i fpdy* or fp dy = FZIV, is a maximum. But the

fact is here overlooked, remarks James Bernoulli, that

with the variation of the curve BFN the weight of the

liquid also is varied. Consequently, in this simple

form the deduction is not admissible.

In the solution which he himself gives, James Ber-

f noulli once more assumes that the small portion FFltl

of the curve possesses the prop-

erty which the whole curve pos-

sesses. And then taking the four

successive points F F, Ff9
Fnn

of which the two extreme ones

are fixed, he so varies F, and

Fn that the length of the arc F
F, Fn Ffn remains unchanged,

which is possible, of course, only by a displacement

of two points. We shall not follow his involved and

unwieldy calculations. The principle of the process is

clearly indicated in our remarks. Retaining the des-

ignations above employed, James Bernoulli, in sub-

stance, states that when

p dx
dy = —r=====9

j/tf 2 __p2

Cpdy is a maximum, and when

(a — p) dx

Fig. 230.

dy=

Cpdy is

V'Zap—p 2

a minimum.
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The dissensions between the two brothers were, wre

may admit, greatly to be deplored. Yet the genius of

the one and the profundity of the other have borne, in

the stimulus which Euler and Lagrange received from

their several investigations, splendid fruits.

5. Euler {Problematis IsoperimetriciSolutio Gc?ieralis, Euier's

Com. Acad. Pctr. T. VI, for 1733, published in 1738)* ciassitica-

t r ' r
tlon °*' tne

was the first to give a more general method of treating isoperimet-

-, r . . ... rical prob-
tnese questions 01 maxima and minima, or isoperimetri- lems.

cal problems. But even his results were based on

prolix geometrical considerations, and not possessed of

analytical generality. Euler divides problems of this

category, with a clear perception and grasp of their

differences, into the following classes :

(1) Required, of #// curves, that for which a prop-

erty A is a maximum or minimum.

(2) Required, of all curves, equally possessing a

property A, that for which B is a maximum or mini-

mum..

(3) Required, of all curves, equally possessing two

properties, A and B, that for which C is a maximum
or minimum. And so on.

A problem of the first class is (Fig. 231) the finding Example*

of the shortest curve through M and N. A problem of

the second class is the finding of a curve through M
and JV, which, having the given length A, makes the

area MPN a maximum. A problem of the third class

would be : of all curves of the given length A, which

pass through M, N and contain the same area

MBJV= B, to find one which describes when rotated

about MN the least surface of revolution. And so on.

* Euier's principal contributions to this subject are contained in three

memoirs, published in the Commentaries of'Petersburg for the years 1733, 1736,

and 1766, and in the tract Methodus inveniendi Linens Curvas Proprietate

Maximi Minimive gaudentes, Lausanne and Geneva, 1744.— Trans.
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We may observe here, that the finding of an abso-

lute maximum or minimum, without collateral condi-

tions, is meaningless. Thus, all the curves of which in

the first example the shortest is sought

possess the common property of pas-

sing through the points M and N.
AfL ^ The solution of problems of the

first class requires the variation of two

elements of the curve or of one point.

This is also sufficient. In problems

of the second class three elements or

Fig. 231.
iwo points must be varied ; the reason

being, that the varied portion must

possess in common with the unvaried portion the prop-

erty A, and, as B is to be made a maximum or mini-

mum, also the property B, that is, must satisfy two con-

ditions. Similarly, the solution of problems of the third

class requires the variation of four elements. And

so on.

The com- The solution of a problem of a higher class involves,

oTufe isoj by implication,- the solution of its converse, in all its

cff proper- forms. Thus, in the third class, we vary four elements

Suler^in- of the curve, so, that the varied portion of the curve

shall share equally with the original portion the values

A and B and, as C is to be made a maximum or a

minimum, also the value C. But the same conditions

must be satisfied, if of all curves possessing equally B
and C that for which A is a maximum or minimum is

sought, or of all curves possessing A and C that for

which B is a maximum or minimum is sought. Thus

a circle, to take an example from the second class, con-

tains, of all lines of the same length A, the greatest

area B, and the circle, also, of all curves containing

the same area B, has the shortest length A. As the

lerences.
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condition that the property A shall be possessed in

common or shall be a maximum, is expressed in the

same manner, Euler saw the possibility of reducing the

problems of the higher classes to problems of the first

class. If, for example, it is required to find, of all

curves having the common property A, that which

makes B a maximum, the curve is sought for which

A -f- mB is a maximum, where m is an arbitrary con-

stant. If on any change of the curve, A -j- mB, for any

value of m, does not change, this is generally possible

only provided the change of A, considered by itself,

and that of B, considered by itself, are = 0.

6. Euler was the originator of still another impor- Thefunda-

tant advance. In treating the problem of finding the principle of

. James Ber-

brachistochrone in a resisting medium, which was in- nouiii's

1 1 tt ii- i
• i

method
vestigated by Herrmann and him, the existing meth- shown not

t-» ii i
• . to be uni-

ods proved incompetent. For the brachistochrone in versaiiy

a vacuum, the velocity depends solely on the vertical

height fallen through. The velocity in one portion of

the curve is in no wise dependent on the other por-

tions. In this case, then, we can indeed say, that if

the whole curve is brachistochronous, every element

of it is also brachistochronous. But in a resisting

medium the case is different. The entire length and

form of the preceding path enters into the determina-

tion of the velocity in the element. The whole curve

can be brachistochronous without the separate ele-

ments necessarily exhibiting this property. By con-

siderations of this character, Euler perceived, that the

principle introduced by James Bernoulli did not hold

universally good, but that in cases of the kind referred

to, a more detailed treatment was required.

7. The methodical arrangement and the great num-

ber of the problems solved, gradually led Euler to sub-
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history of
the Calcu-
lus of Vari
ations.

Lagrange's stantially the same methods that Lagrange afterwards

" developed in a somewhat different form, and which

now go by the name of the Calculus of Variatioiis. First,

John Bernoulli lighted on an accidental solution of a

problem, by analogy. James Bernoulli developed, for

the solution of such problems, a geometrical method.

Euler generalised the problems and the geometrical

method. And finally, Lagrange, entirely emancipating

himself from the consideration of geometrical figures,

gave an analytical method. Lagrange remarked, that

the increments which functions receive in consequence

of a change in their for?n are quite analogous to the in-

crements they receive in consequence of a change of

their independent variables. To distinguish the two

species of increments, Lagrange denoted the former

by d, the latter by d. By the observation of this anal-

ogy Lagrange was enabled to write down at once the

equations which solve problems of maxima and minima.

Of this idea, which has proved itself a very fertile one,

Lagrange never gave a verification ; in fact, did not

even attempt it. His achievement is in every respect

a peculiar one. He saw, with great economical in-

sight, the foundations which in his judgment were suf-

ficiently secure and serviceable to build upon. But

the acceptance of these fundamental principles them-

selves was vindicated only by its results. Instead of

employing himself on the demonstration of these prin-

ciples, he showed with what success they could be em-

ployed. (Essai d'une nouvelle methode pour determiner

les maxima et minima des formules integrates indcfinies.

Misc. Taur. 1762.)

The difficulty which Lagrange's contemporaries and

successors experienced in clearly grasping his idea, is

quite intelligible. Euler sought in vain to clear up the
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difference between a variation and a differential by The mis-
concep-

imagining constants contained in the function, with tions of La-
.

grange's

the change of which the form of the function changed, idea.

The increments of the value of the function arising

from the increments of these constants were regarded

by him as the variations, while the increments of the

function springing from the increments of the indepen-

dent variables were the differentials. The conception

of the Calculus of Variations that springs from such a

view is singularly timid, narrow, and illogical, and does

not compare with that of Lagrange. Even Lindelof's

modern work, so excellent in other respects, is marred

by this defect. The first really competent presenta-

tion of Lagrange's idea is, in our opinion, that of Jel-

lett.* Jellett appears to have said what Lagrange per-

haps was unable fully to say, perhaps did not deem it

necessary to say.

8. Tellett's view is, in substance, this. Quantities I^iiett's ex-
J

m _

position ot

sfenerallv are divisible into constant and variable quan- theprinci-
& J x

pies of the

tities ; the latter being subdivided into independent Calculus of
3 °

.
Variations.

and dependent variables, or such as may be arbitrarily

changed, and such whose change depends on the

change of other, independent, variables, in some way

connected with them. The latter are called functions

of the former, and the nature of the relation that con-

nects them is termed the form of the function. Now,

quite analogous to this division of quantities into con-

stant and variable, is the division of the forms offunc-

tions m\o determinate (constant) and indeterminate (vari-

able). If the form of a function, y= <p(x), is inde-

terminate, or variable, the value of the function y can

change in two ways : (1) by an increment dx of the

* An Elementary Treatise on the Calculus of Variations. By the Rev.

John Hewitt Jellett. Dublin, 1850.



438 THE SCIENCE OF MECHANICS.

independent variable x, or (2) by a change oiform, by

a passage from cp to <p t
. The first change is the dif-

ferential dy, the second, the variation Sy. Accord-

ingly,

dy= cp (x -f- dx) — cp (x), and

6y= cp
t
(x) — cp(x).

The object The change of value of an indeterminate function
of the cal- .

cuius of va- due to a mere change 01 form involves no problem,

lustrated. just as the change of value of an independent variable

involves none. We may assume any change of form

we please, and so produce any change of value we
please. A problem is not presented till the change in

value of a determinate function (7^) of an indetermi-

nate function cp, due to a change ofform of the included

indeterminate function, is required. For example, if

we have a plane curve of the indeterminate form y=
<p(x), the length of its arc between the abscissae x

and x
t

is

s-sM^P-N+ffi-''-
) J * \dx)

Xq Xq

a determinate function of an indeterminate function.

The moment a definite form of curve is fixed upon, the

value of S can be given. For any change of form of

the curve, the change in value of the length of the arc,

6S, is determinable. In the example given, the func-

tion S does not contain the function y directly, but

through its first differential coefficient dy/dx, which is

itself dependent on y. Let u = F(y) be a determinate

function of an indeterminate function y = cp (x) ; then

6u=F (J+6y)
- F<j) =-^ dy.

Again, let u=J?(y, dy/dx) be a determinate function
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of an indeterminate function, y = q?(x). For a change

of form of q), the value of y changes by dy and the

value of dyjdx by S{dyjdx). The corresponding change

in the value of u is

dy J
, dy dx
dx

The expression 6
(

y

is obtained by our definition from ^xpres^

the varia-

iy d(y + Sy) dy_ddy tionsof dif-

r
«y__ a}J -T^Jl __ y= •7

,
ferential

dx dx dx dx'

Similarly, the following results are found :

d2y__d2 dy *<**?_ d*
$J_

dx 2 ~ dx 2 ' dx* ~~ dx 3 '

and so forth.

We now proceed to a problem, namely, the de-Aprobien

termination of the form of the function y = cp(x) that

will render

U= Tvdx

where

ir zr,
dy d 2 yv= F^ y>ix>dx^>

a maximum or minimum ; cp denoting an indetermi-

nate, and F a determinate function. The value of U
may be varied (1) by a change of the limits, x

Q ,
xv

Outside of the limits, the change of the independent

variables x, as such, does not affect U\ accordingly,

if we regard the limits as fixed, this is the only respect

in which we need attend to x. The only other way

(2) in which the value of U is susceptible of variation
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is by a change of the form of y = q)(x). This produces

a change of value in

dv d2 y

amounting to

d x dz 2

dy d2 y
dy, 6 ---, tf —- .

dx dx 2

and so forth. The total change in U, which we shall

call BU, and to express the maximum-minimum con-

dition put =0, consists of the differential d 17 and the

variation 8U. Accordingly,

DU=dU+ $U= 0.

Expression Denoting by V
A
dx

t
and — V

Q
dx

Q
the increments of

of U due to the change of the limits, we then havefor the total

variation
the func-

question. I) 17= V
t
dx

x
— V

Q
dx -f- 8 C Vdx =

V
1
dx

1
— V dx +jdV.dx = 0.

But by the principles stated on page 439 we further get

dy dy dx d 2y dx 2

dx dx 2

dV dVddy dV d*6y_

dy y + dy ~dx~ /*y dx2

dx dx 2

For the sake of brevity we put

dV_N dV_ dV__
*y~ yy~ V--y

~ 2 '

dx dx 2

Then

6 J VdX:
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f (NSy + P
x

d
fl + P2^ + P3

**% + .... )dx. -n,. in-
J \

y 1 dx 2 dx 1 3 dx 9
/

grationolgration of
x ^ / the third

term of the

One difficulty here is, that not only dy, but also the expression
J ' J y> for the total

terms dSy/dx, d 2 Sy/dx 2 .... occur in this equation, va"ation.

—terms which are dependent on one another, but not

in a directly obvious manner. This drawback can be

removed by successive integration by parts, by means

of the formula

Cu dv = u v — Cv du.

By this method

Cp. d26y
dx = p d Sy— C-p»

d.^L dx =
J 2 dx 2 2 dx J dx dx

D ddy dP
2 Cd<ip2 * j aP

* -d-x"
- dx

Sy
+J dJ 6}' dX

'
and S° °n -

Performing all these integrations between the limits,

we obtain for the condition U[f=() the expression

+ • •

= V
1
dx

1
-v. dx

dx ^ ' .)/,,-('•
dP.

2

dx
[ +-

\

) ^0'0

+ •
•

dx j),(§),--('
dp

3

dx
+••

fddy\

\dx)

+/
X

' \t dP
, ,

d2 P^ d * P
^ , \* jN— 1 + 2 - ~

7^ + )&y. dx,
dx dx 2 dx 3 '

x

which now contains only Sy under the integral sign.

The terms in the first line of this expression are

independent of any change in the form of the function

and depend solely upon the variation of the limits.
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The inter- The terms of the two following lines depend on the

?hTreJS?ts
f

change in the form of the function, for the limiting

values of x only ; and the indices i and 2 state that

the actual limiting values are to be put in the place of

the general expressions. The terms of the last line,

finally, depend on the general change in the form of

the function. Collecting all the terms, except those in

the last line, under one designation a
t
—ex

Q ,
and calling

the expression in parentheses in the last line f3,
we

have
x

x

= a
l
— a

o + fft • $y • dx -

But this equation can be satisfied only if

«, — a = 0)

and

j*/36y<ix = (2 )

Xq

For if each of the members were not equal to zero,

each would be determined by the other. But the in-

tegral of an indeterminate function cannot be expressed

in terms of its limiting values only. Assuming, there-

fore, that the equation

f
t

/3dy<ix = Q,

The eqiia- holds generally good, its conditions can be satisfied,

sowe^ht since 6y is throughout arbitrary and its generality of

fnak
b
e;The

0r
form cannot be restricted, only by making (3 = 0. By

function in

question a the equation
maximum p ,/ 2 p // 3 P
or mini- „ Cl±

1 ^±2 __
a_J_Z . Q # . %

r&\
iV ~ "dx^ dx* dx* ^ y JJ

therefore, the form of the function y = cp(x) that makes

the expression 6^a maximum or minimum is defined.
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Equation (3) was found by Euler. But Lagrange first

showed the application of equation (1), for the deter-

mination of a function by the conditions at its limits.

By equation (3), which it must satisfy, the form of the

function y= <p(x) is generally determined ; but this

equation contains a number of arbitrary constants,

whose values are determined solely by the conditions

at the limits. With respect to notation, Jellett rightly

remarks, that the employment of the symbol S in the

first two terms V
1
6x

1
= V

Q
dx of equation (1), (the

form used by Lagrange,) is illogical, and he correctly

puts for the increments of the independent variables

the usual symbols dx 19 dx Q
.

o. To illustrate the use to which these equations a practical

.
illustration

may be put, let us seek the form of the function that of the use
J r of these

makes equations.

/V1 +W-
a minimum—the shortest line. Here

(dy\

\dxr
v=F[ d

.y.

All expressions except

dy

___
dV __ ^

1 " Jv
~^ ^ ,

[dy
dx ^ + V,

2

vanish in equation (3), and that equation becomes

dP
1
/dx = ; which means that P

t
, and consequently

its only variable, dy/dx, is independent of x. Hence,

dy/dx = a, and y = ax -j- b, where a and b are con-

stants.

The constants a, b are determined by the values of
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Develop- the limits. If the straight line passes through the
merit of the
illustration, points x

Q , v and x
t , y t

, then

y 1
=ax

1 + b\ K J

and as dx
Q
= dx

x
= 0, dy = dy

t
= 0, equation (i)

vanishes. The coefficients d (dy/dx), d (d2y/dx 2
), ....

independently vanish. Hence, the values of a and b

are determined by the equations (;;/) alone.

If the limits x
Q , x

x
only are given, but y ,y x

are

indeterminate, we have dx
Q
= dx

x
= 0, and equation

(i) takes the form

---^—(
<
dy

1
— dy o ) = 0,

]/l -f a 2

which, since dy
Q
and dy

x
are arbitrary, can only be

satisfied if a = 0. The straight line is in this case

y = b, parallel to the axis of abscissae, and as b is inde-

terminate, at any distance from it.

It will be noticed, that equation (i) and the sub-

sidiary conditions expressed in equation {pi), with re-

spect to the determination of the constants, generally

complement each other.

If

*=j>>| !+(£)''*
dxl

is to be made a minimum, the integration of the appro-

priate form of (3) will give

c

+

If Z is a minimum, then 2 7tZ also is a minimum, and

the curve found will give, by rotation about the axis

of abscissae, the least surface of revolution. Further,
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to a minimum of Z the lowest position of the centre of

gravity of a homogeneously heavy curve of this kind

corresponds ; the curve is therefore a catenary. The
determination of the constants c, c is effected by means

of the limiting conditions, as above.

In the treatment of mechanical problems, a dis- Variations
and virtual

tinction is made between the increments of coordinates displace-
ments dis-

that actually take place in time, namely, dx, dy, dz, tinguished.

and the possible displacements dx, dy, dz, considered,

for instance, in the application of the principle of vir-

tual velocities. The latter, as a rule, are not varia-

tions ; that is, are not changes of value that spring

from changes in the form of a function. Only when
we consider a mechanical system that is a continuum,

as for example a string, a flexible surface, an elastic

body, or a liquid, are we at liberty to regard dx, dy,

^as indeterminate functions of the coordinates x, y,

z, and are we concerned with variations.

It is not our purpose in this work, to develop math- importance
.

*
.

r
of the cal-

ematical theories, but simply to treat the purely phys- cuius of va-

. . . . nations for

ical part of mechanics. But the history of the isoperi- mechanics.

metrical problems and of the calculus of variations had

to be touched upon, because these researches have ex-

ercised a very considerable influence on the develop-

ment of mechanics. Our sense of the general prop-

erties of systems, and of properties of maxima and

minima in particular, was much sharpened by these

investigations, and properties of the kind referred to

were subsequently discovered in mechanical systems

with great facility. As a fact, physicists, since La-

grange's time, usually express mechanical principles

in a maximal or minimal form. This predilection

would be unintelligible without a knowledge of the

historical development.
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n.

THEOLOGICAL. ANIMISTIC, AND MYSTICAL POINTS OF VIEW

IN MECHANICS.

i. If, in entering a parlor in Germany, we happen

to hear something said about some man being very

pious, without having caught the name, we may fancy

that Privy Counsellor X was spoken of,—or Herr von

Y ; we should hardly think of a scientific man of our

acquaintance. It would, however, be a mistake to sup-

pose that the want of cordiality, occasionally rising to

embittered controversy, which has existed in our day

between the scientific and the theological faculties,

always separated them. A glance at the history of

science suffices to prove the contrary.

The con- People talk of the "conflict" of science and the-

enc^and
1
"

ology, or better of science and the church. It is in
the church.

truth a prolific theme> On the one hand, we have the

long catalogue of the sins of the church against pro-

gress, on the other side a " noble army of martyrs,"

among them no less distinguished figures than Galileo

and Giordano Bruno. It was only by good luck that

Descartes, pious as he was, escaped the same fate.

These things are the commonplaces of history ; but it

would be a great mistake to suppose that the phrase

"warfare of science" is a correct description of its

general historic attitude toward religion, that the only

repression of intellectual development has come from

priests, and that if their hands had been held off, grow-

ing science would have shot up with stupendous velo-

city. No doubt, external opposition did have to be

fought ; and the battle with it was no child's play.
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Nor was any engine too base for the church to handle The stme-
gleofscien-

in this struggle. She considered nothing but how to tists with
their own

conquer ; and no temporal policy ever was conducted precon-
ceived

so selfishly, so unscrupulously, or so cruelly. But in- ideas,

vestigators have had another struggle on their hands,

and by no means an easy one, the struggle with their

own preconceived ideas, and especially with the notion

that philosophy and science must be founded on the-

ology. It was but slowly that this prejudice little by

little was erased.

2. But let the facts speak for themselves, while we Historical

c
examples.

introduce the reader to a few historical personages.

Napier, the inventor of logarithms, an austere Puri-

tan, who lived in the sixteenth century, was, in addi-

tion to his scientific avocations, a zealous theologian.

Napier applied himself to some extremely curious

speculations. He wrote an exegetical commentary on

the Book of Revelation, with propositions and mathe-

matical demonstrations. Proposition XXVI, for ex-

ample, maintains that the pope is the Antichrist
;
propo-

sition XXXVI declares that the locusts are the Turks

and Mohammedans ; and so forth.

Blaise Pascal (1623-1662), one of the most rounded

geniuses to be found among mathematicians and phys-

icists, was extremely orthodox and ascetical. So deep

were the convictions of his heart, that despite the gen-

tleness of his character, he once openly denounced at

Rouen an instructor in philosophy as a heretic. The
healing of his sister by contact with a relic most seri-

ously impressed him, and he regarded her cure as a

miracle. On these facts taken by themselves it might

be wrong to lay great stress ; for his whole family were

much inclined to religious fanaticism. But there are

plenty of other instances of his religiosity. Such was
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Pascal.

Otto von
Guericke.

his resolve,—which was carried out, too,—to abandon

altogether the pursuits of science and to devote his life

solely to the cause of Christianity. Consolation, he

used to say, he could find nowhere but in the teachings

of Christianity ; and all the wisdom of the world availed

him not a whit. The sincerity of his desire for the

conversion of heretics is shown in his Lettres provin-

ciates, where he vigorously declaims against the dread

ful subtleties- that the doctors of the Sorbonne had

devised, expressly to persecute the Jansenists. Very

remarkable is Pascal's correspondence with the theo-

logians of his time ; and a modern reader is not a little

surprised at finding this great " scientist " seriously

discussing in one of his letters whether or not the Devil

was able to work miracles.

Otto von Guericke, the inventor of the air-pump,

occupies himself, at the beginning of his book, now

little over two hundred years old, with the miracle of

Joshua, which he seeks to harmonise with the ideas

of Copernicus. In like manner, we find his researches

on the vacuum and the nature of the atmosphere in-

troduced by disquisitions concerning the location of

heaven, the location of hell, and so forth. Although

Guericke really strives to answer these questions as ra-

tionally as he can, still we notice that they give him

considerable trouble,—questions, be it remembered,

that to-day the theologians themselves would consider

absurd. Yet Guericke was a man who lived after the

Reformation !

The giant mind of Newton did not disdain to employ

itself on the interpretation of the Apocalypse. On such

subjects it was difficult for a sceptic to converse with

him. When Halley once indulged in a jest concerning

theological questions, he is said to have curtly repulsed
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him with the remark : "I have studied these things ; Newton and
,

,
Leibnitz.

you have not !

We need not tarry by Leibnitz, the inventor of the

best of all possible worlds and of pre-established har-

mony—inventions which Voltaire disposed of in Can-

dide, a humorous novel with a deeply philosophical pur-

pose. But everybody knows that Leibnitz was almost

if not quite as much a theologian, as a man of science.

Let us turn, however, to the last century. Euler, in Euler.

his Letters to a German Princess, deals with theologico-

philosophical problems in the midst of scientific ques-

tions. He speaks of the difficulty involved in explaining

the interaction of body and mind, due to the total

diversity of these two phenomena,—a diversity to his

mind undoubted. The system of occasionalism, devel-

oped by Descartes and his followers, agreeably to which
God executes for every purpose of the soul, (the soul it-

self not being able to do so,) a corresponding movement
of the body, does not quite satisfy him. He derides,

also, and not without humor, the doctrine of pre-

established harmony, according to which perfect agree-

ment was established from the beginning between the

movements of the body and the volitions of the soul,

—

although neither is in any way connected with the

other,—just as there is harmony between two different

but like-constructed clocks. He remarks, that in this

view his own body is as foreign to him as that of a

rhinoceros in the midst of Africa, which might just as

well be in pre-established harmony with his soul as

its own. Let us hear his own words. In his day, Latin

was almost universally written. When a German
scholar wished to be especially condescending, he
wrote in French : "Si dans le cas d'un dereglement

"de mon corps Dieu ajustait celui d'un rhinoceros,
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"en sorte que ses mouvements fussent tellement d'ac-

" cord avec les ordres de mon ame, qu'il levat la patte

"ail moment que je voudrais lever la main, et ainsi

" des autres operations, ce serait alors mon corps. Je

" me trouverais subitement dans la forme d'un rhino-

"ceros au milieu de l'Afrique, mais non obstant cela

"mon ame continuerait les meme operations. J'aurais

"6galement l'honneur d'^crire a V. A., mais je ne sais

"pas comment elle recevrait mes lettres."

Euier's One would almost imagine that Euler, here, had been

procH^l tempted to play Voltaire. And yet, apposite as was

his criticism in this vital point, the mutual action of

body and soul remained a miracle to him, still. But he

extricates himself, however, from the question of the

freedom of the will, very sophistically. To give some

idea of the kind of questions which a scientist was per-

mitted to treat in those days, it may be remarked that

Euler institutes in his physical "Letters" investiga-

tions concerning the nature of spirits,- the connection

between body and soul, the freedom of the will, the

influence of that freedom on physical occurrences,

prayer, physical and moral evils, the conversion of sin-

ners, and such like topics ;—and this in a treatise full

of clear physical ideas and not devoid of philosophical

ones, where the well-known circle-diagrams of logic

have their birth-place,

character 3. Let these examples of religious physicists suffice.

°ogicai
the0

" We have selected them intentionally from among the

lre
n
gr
n
e
g
a
s

t?n- foremost of scientific discoverers. The theological pro-
quirers.

clivities which these men followed, belong wholly to

their innermost private life. They tell us openly things

which they are not compelled to tell us, things about

which they might have remained silent. What they

utter are not opinions forced upon them from without

;
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they are their own sincere views. They were not con-

scious of any theological constraint. In a court which

harbored a Lamettrie and a Voltaire, Eulerhad no rea-

son to conceal his real convictions.

According to the modern notion, these men should character
ot their age.

at least have seen that the questions they discussed

did not belong under the heads where they put them,

that they were not questions of science. Still, odd as

this contradiction between inherited theological beliefs

and independently created scientific convictions seems

to us, it is no reason for a diminished admiration of

those leaders of scientific thought. Nay, this very fact

is a proof of their stupendous mental power : they were

able, in spite of the contracted horizon of their age, to

which even their own aperpis were chiefly limited, to

point out the path to an elevation, where our genera-

tion has attained a freer point of view.

Every unbiassed mind must admit that the age in

which the chief development of the science of mechan-

ics took place, was an age of predominantly theological

cast. Theological questions were excited by everything,

and modified everything. No wonder, then, that me-

chanics took the contagion. But the thoroughness with

which theological thought thus permeated scientific

inquiry, will best be seen by an examination of details.

4. The impulse imparted in antiquity to this direc- j^^ojs^

tion of thought by Hero and Pappus has been alluded on the
J x * strength or

to in the preceding chapter. At the beginning of the materials.

seventeenth century we find Galileo occupied with prob-

lems concerning the strength of materials. He shows

that hollow tubes offer a greater resistance to flexure

than solid rods of the same length and the same quantity

of material, and at once applies this discovery to the

explanation of the forms of the bones of animals, which
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are usually hollow and cylindrical in shape. The phe-

nomenon is easily illustrated by the comparison of a

flatly folded and a rolled sheet of paper. A horizontal

beam fastened at one extremity and loaded at the other

may be remodelled so as to be thinner at the loaded

end without any loss of stiffness and with a consider-

able saving of material. Galileo determined the form of

a beam of equal resistance at each cross-section. He
also remarked that animals of similar geometrical con-

struction but of considerable difference of size would

comply in very unequal proportions with the laws of

resistance.

Evidences The forms of bones, feathers, stalks, and other or-
of design

. 111 ....
in nature, game structures, adapted, as they are, in their minut-

est details to 'the purposes they serve, are highly cal-

culated to make a profound impression on the thinking

beholder, and this fact has again and again been ad-

duced in proof of a supreme wisdom ruling in nature.

Let us examine, for instance, the pinion-feather of a

bird. The quill is a hollow tube diminishing in thick-

ness as we go towards the end, that is, is a body of

equal resistance. Each little blade of the vane re-

peats in miniature the same construction. It would

require considerable technical knowledge even to imi-

tate a feather of this kind, let alone invent it. We
should not forget, however, that investigation, and

not mere admiration, is the office of science. We
know how Darwin sought to solve these problems, by

the theory of natural selection. That Darwin's solution

is a complete one, may fairly be doubted ; Darwin him-

self questioned it. All external conditions would be

powerless if something were not present that admitted

of variation. But there can be no question that his

theory is the first serious attempt to replace mere ad-
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miration of the adaptations of organic nature by seri-

ous inquiry into the mode of their origin.

Pappus's ideas concerning the cells of honeycombs The cells of
a r <-> J

the honey-

Were the subject of animated discussion as late as the comb.

eighteenth century. In a treatise, published in 1865,

entitled Homes Without Hands (p. 428), Wood substan-

tially relates the following :
<

' Maraldi had been struck

with the great regularity of the cells of the honey-

comb. He measured the angles of the lozenge-shaped

plates, or rhombs, that form the terminal walls of the

cells, and found them to be respectively iog; 28' and

70 32'. Reaumur, convinced that these angles were in

some way connected with the economy of the cells,

requested the mathematician Konig to calculate the

form of a hexagonal prism terminated by a pyramid

composed of three equal and similar rhombs, which

would give the greatest amount of space with a given

amount of material. The answer was, that the angles

should be io9°26' and 70 34'. The difference, accord-

ingly, was two minutes. Maclaurin,* dissatisfied with

thisagreementjrepeatedMaraldi'smeasurementSjfound

them correct, and discovered, in going over the calcu-

lation, an error in the logarithmic table employed by

Konig. Not the bees, but the mathematicians were

wrong, and the bees had helped to detect the error !

"

Any one who is acquainted with the methods of meas-

uring crystals and has seen the cell of a honeycomb,

with its rough and non-reflective surfaces, will question

whether the measurement of such cells can be executed

with a probable error of only two minutes, f So, we

must take this story as a sort of pious mathematical

* Philosophical Transactions for 1743.

—

Trans.

t But see G. F. Maraldi in the Memoires de Vacademie for 1712. It is, how-

ever, now well known the cells vary considerably. See Chauncey Wright,

Philosophical Discussions, 1877, p. 311.— Trans.
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fairy-tale, quite apart from the consideration that noth-

ing would follow from it even were it true. Besides,

from a mathematical point of view, the problem is too

imperfectly formulated to enable us to decide the ex-

tent to which the bees have solved it.

other The ideas of Hero and Fermat, referred to in the
instances.

previous chapter, concerning the motion of light, at

once received from the hands of Leibnitz a theolog-

ical coloring, and played, as has been before mentioned,

a predominant role in the development of the calculus

of variations. In Leibnitz's correspondence with John
Bernoulli, theological questions are repeatedly dis-

cussed in the very midst of mathematical disquisitions.

Their language is not unfrequently couched in biblical

pictures. Leibnitz, for example, says that the problem

of the brachistochrone lured him as the apple had lured

Eve.

The theo- Maupertuis, the famous president of the Berlin

nei oi the Academy, and a friend of Frederick the Great, gave
principle of . . .

least ac- a new impulse to the theologismg bent of physics by

the enunciation of his principle of least action. In the

treatise which formulated this obscure principle, and

which betrayed in Maupertuis a woeful lack of mathe-

matical accuracy, the author declared his principle to be

the one which best accorded writh the wisdom of the

Creator. Maupertuis was an ingenious man, but not a

man of strong, practical sense. This is evidenced by

the schemes he was incessantly devising : his bold prop-

ositions to found a city in which only Latin should be

spoken, to dig a deep hole in the earth to find new
substances, to institute psychological investigations by

means of opium and by the dissection of monkeys, to

explain the formation of the embryo by gravitation, and

so forth. He was sharply satirised by Voltaire in the

tion.
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Histoire du docteur Akakia, a work which led, as we

know, to the rupture between Frederick and Voltaire.

Maupertuis's principle would in all probability soon Euier's re-r 11 1 1
tention of

have been forgotten, had Euler not taken up the sug- thetheoiog-.... ical basis of

gestion. Euler magnanimously left the principle its this prin-

r • 1
ciple.

name, Maupertuis the glory of the invention, and con-

verted it into something new and really serviceable.

What Maupertuis meant to convey is very difficult to

ascertain. What Euler meant may be easily shown by

simple examples. If a body is constrained to move on a

rigid surface, for instance, on the surface of the earth, it

will describe when an impulse is imparted to it, the

shortest path between its initial and terminal positions.

Any other path that might be prescribed it, would be

longer or would require a greater time. This principle

finds an application in the theory of atmospheric and

oceanic currents. The theological point of view, Euler

retained. He claims it is possible to explain phenomena,

not only from their physical causes, but also from their

purposes. "As the construction of the universe is the

"most perfect possible, being the handiwork of an

" all-wise Maker, nothing can be met with in the world

" in which some maximal or minimal property is not

"displayed. There is, consequently, no doubt but

"that all the effects of the world can be derived by

"the method of maxima and minima from their final

"causes as well as from their efficient ones."*

5. Similarly, the notions of the constancy of the

quantity of matter, of the constancy of the quantity of

* " Quum enim mundi imiversi fabrica sit perfectissima, atque a creatore

sapientissimo absoluta, nihil omnino in mundo contingit, in quo non maximi

minimive ratio quaepiam eluceat; quam ob rem dubium prorsus est nullum,

quin omnes mundi effectus ex causis tinalibus, ope methodi maximorum et

minimorum, aeque feliciter determinari quaeant, atque ex ipsis causis efficien-

tibus." {Methodus inveniendi linens carvas maximi minimive proprietate

gaudentes. Lausanne, 1744.)
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The central motion, of the indestructibility of work or energy, con-

m°odera ceptions which completely dominate modern physics,

SlLmfypf all arose under the influence of theological ideas. The

o
h
rigtglcal

notions in question had their origin in an utterance of

Descartes, before mentioned, in the Principles ofPhilos-

ophy, agreeably to which the quantity of matter and mo-

tion originally created in the world,—such being the

only course compatible with the constancy of the Crea-

tor,—is always preserved unchanged. The conception

of the manner in which this quantity of motion should

be calculated was very considerably modified in the

progress of the idea from Descartes to Leibnitz, and to

their successors, and as the outcome of these modifi-

cations the doctrine gradually and slowly arose which

is now called the "law of the conservation of energy."

But the theological background of these ideas only

slowly vanished. In fact, at the present day, we still

meet with scientists who indulge in self-created mys-

ticisms concerning this law.

Gradual During the entire sixteenth and seventeenth centu-

fromthe
11

ries, down to the close of the eighteenth, the prevail-

p
h
p1nt°o

g
f

Cal

ing inclination of inquirers was, to find in all physical

laws some particular disposition of the Creator. But

a gradual transformation of these views must strike

the attentive observer. Whereas with Descartes and

Leibnitz physics and theology were still greatly inter-

mingled, in the subsequent period a distinct endeavor

is noticeable, not indeed wholly to discard theology,

yet to separate it from purely physical questions. Theo-

logical disquisitions were put at the beginning or rele-

gated to the end of physical treatises. Theological

speculations were restricted, as much as possible, to

the question of creation, that, from this point onward,

the way might be cleared for physics.

view
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Towards the close of the eighteenth century a re- ultimate

1111 11 i-i complete
markable change took place,—a change which was emancipa-

tion of
apparently an abrupt departure from the current trend physicsriii* 1 • ii«i r

fr"om theol-
01 thought, but in reality was the logical outcome of ogy.

the development indicated. After an attempt in a

youthful wrork to found mechanics on Euler's principle

of least action, Lagrange, in a subsequent treatment

of the subject, declared his intention of utterly disre-

garding theological and metaphysical speculations, as

in their nature precarious and foreign to science. He
erected a new mechanical system on entirely different

foundations, and no one conversant with the subject

will dispute its excellencies. All subsequent scientists

of eminence accepted Lagrange's view, and the pres-

ent attitude of physics to theology was thus substan-

tially determined.

6. The idea that theology and physics are two dis- The m °d-
0-/ r J ern ideal

tinct branches of knowledge, thus took, from its first always the

. .
attitude of

germination in Copernicus till its final promulgation the greatest
x inquirers.

by Lagrange, almost two centuries to attain clearness

in the minds of investigators. At the same time it

cannot be denied that this truth was always clear to

the greatest minds, like Newton. Newton never, de-

spite his profound religiosity, mingled theology with

the questions of science. True, even he concludes his

Optics, whilst on its last pages his clear and luminous

intellect still shines, with an exclamation of humble

contrition at the vanity of all earthly things. But his

optical researches proper, in contrast to those of Leib-

nitz, contain not a trace of theology. The same may
be said of Galileo and Huygens. Their writings con-

form almost absolutely to the point of view of La-

grange, and may be accepted in this respect as class-

ical. But the general views and tendencies of an age
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must not be judged by its greatest, but by its average,

minds.

The theo- To comprehend the process here portrayed, the gen-

cepdon
C
o°f

n
"

eral condition of affairs in these times must be consid-

nrtuLT^nd ered. It stands to reason that in a stage of civilisation

abie
am

"

in which religion is almost the sole education, and the

only theory of the world, people would naturally look

at things in a theological point of view, and that they

would believe that this view was possessed of compe-

tency in all fields of research. If we transport ourselves

back to the time when people played the organ with

their fists, when they had to have the multiplication table

visibly before them to calculate, when they did so much

with their hands that people now-a-days do with their

heads, we shall not demand of such a time that it

should critically put to the test its own views and the-

ories. With the widening of the intellectual horizon

through the great geographical, technical, and scien-

tific discoveries and inventions of the fifteenth and six-

teenth centuries, with the opening up of provinces in

which it was impossible to make any progress with the

old conception of things, simply because it had been

formed prior to the knowledge of these provinces, this

bias of the mind gradually and slowly vanished. The

great freedom of thought which appears in isolated

cases in the early middle ages, first in poets and then

in scientists, will always be hard to understand. The en-

lightenment of those days must have been the work of a

few very extraordinary minds, and can have been bound

to the views of the people at large by but very slender

threads, more fitted to disturb those views than to re-

form them. Rationalism does not seem to have gained

a broad theatre of action till the literature of the eigh-

teenth century. Humanistic, philosophical, historical,



FORMAL DEVELOPMENT. 459

and physical science here met and gave each other

mutual encouragement. All who have experienced, in

part, in its literature, this wonderful emancipation of

the human intellect, will feel during their whole lives a

deep, elegiacal regret for the eighteenth century.

7. The old point of view, then, is abandoned. Its The en-
1 v

.
lighten-

history is now detectible only in the form of the me- ment of the
J *

.
new views.

chanical principles. And this form will remain strange

to us as long as we neglect its origin. The theological

conception of things gradually gave way to a more

rigid conception ; and this was accompanied with a

considerable gain in enlightenment, as we shall now

briefly indicate.

When we say light travels by the paths of shortest

time, we grasp by such an expression many things.

But we do not know as yet ivhy light prefers paths of

shortest time. We forego all further knowledge of the

phenomenon, if we find the reason in the Creator's wis-

dom. We of to-day know, that light travels by all

paths, but that only on the paths of shortest time do

the waves of light so intensify each other that a per-

ceptible result is produced. Light, accordingly, only

appears to travel by the paths of shortest time. After Extrava-
11

m . . .
gance as

the prejudice which prevailed on these questions had well as
-" ... . economy in

been removed, cases were immediately discovered in nature.

which by the side of the supposed economy of nature

the most striking extravagance was displayed. Cases

of this kind have, for example, been pointed out by

Jacobi in connection with Euler's principle of least ac-

tion. A great many natural phenomena accordingly

produce the impression of economy, simply because

they visibly appear only when by accident an econom-

ical accumulation of effects take place. This is the

same idea in the province of inorganic nature that Dar-
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win worked out in the domain of organic nature. We
facilitate instinctively our comprehension of nature by

applying to it the economical ideas with which we are

familiar.

Expiana- Often the phenomena of nature exhibit maximal
tionofmax-

. . .

imai and or minimal properties because when these greatest or

effects. least properties have been establishesd the causes of all

further alteration are removed. The catenary gives

the lowest point of the centre of gravity for the simple

reason that when that point has been reached all fur-

ther descent of the system's parts is impossible. Li-

quids exclusively subjected to the action of molecular

forces exhibit a minimum of superficial area, because

stable equilibrium can only subsist when the molecular

forces are able to effect no further diminution of super-

ficial area. The important thing, therefore, is not the

maximum or minimum, but the removal of work ; work

being the factor determinative of the alteration. It

sounds much less imposing but is much more elucida-

tory, much more correct and comprehensive, instead

of speaking of the economical tendencies of nature, to

say :
" So much and so much only occurs as in virtue

of the forces and circumstances involved can occur."

Points of The question may now justly be asked, If the point

the theoiog- of view of theology which led to the enunciation of the
ical and . , . ..

,
..

scientific principles of mechanics was utterly wrong, how comes

it that the principles themselves are in all substantial

points correct ? The answer is easy. In the first place,

the theological view did not supply the contejits of the

principles, but simply determined their guise; their mat-

ter was derived from experience. A similar influence

would have been exercised by any other dominant type

of thought, by a commercial attitude, for instance, such

as presumably had its effect on Stevinus's thinking. In

concep-
tions.
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the second place, the theological conception of nature

itself owes its origin to an endeavor to obtain a more
comprehensive view of the world ;—the very same en-

deavor that is at the bottom of physical science. Hence,
even admitting that the physical philosophy of theology

is a fruitless achievement, a reversion to a lower state of

scientific culture, we still need not repudiate the sound

root from which it has sprung and which is not differ-

ent from that of true physical inquiry.

In fact, science can accomplish nothing by the con- Necessity

sideration of individual facts ; from time to time it must stant con-
, •

.

1 t •, -, ^ *

,., sideration
cast its glance at the world as a whole. Galileo's of the ah,

laws of falling bodies, Huygens's principle of vis viva,
mresear

the principle of virtual velocities, nay, even the con-

cept of mass, could not, as we saw, be obtained, ex-

cept by the alternate consideration of individual facts

and of nature as a totality. We may, in our men-
tal reconstruction of mechanical processes, start from
the properties of isolated masses (from the elementary

or differential laws), and so compose our pictures of

the processes ; or, we may hold fast to the properties

of the system as a whole (abide by the integral laws).

Since, however, the properties of one mass always in-

clude relations to other masses, (for instance, in ve-

locity and acceleration a relation of time is involved,

that is, a connection with the whole world,) it is mani-

fest XhdX purely differential, or elementary, laws do not

exist. It would be illogical, accordingly, to exclude

as less certain this necessary view of the All, or of the

more general properties of nature, from our studies.

The more general a new principle is and the wider its

scope, the more perfect tests will, in view of the possi-

bility of error, be demanded of it.

The conception of a will and intelligence active in
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pagan ideas nature is by no means the exclusive property of Chris-

fSes
P
rife"in tian monotheism. On the contrary, this idea is a quite

worid°
dern

familiar one to paganism and fetishism. Paganism,

however, finds this will and intelligence entirely in in-

dividual phenomena, while monotheism seeks it in the

All. Moreover, a pure monotheism does not exist.

The Jewish monotheism of the Bible is by no means

free from belief in demons, sorcerers, and witches
;

and the Christian monotheism of mediaeval times is

even richer in these pagan conceptions. We shall not

speak of the brutal amusement in which church and

state indulged in the torture and burning of witches,

and which was undoubtedly provoked, in the majority

of cases, not by avarice but by the prevalence of the

ideas mentioned. In his instructive work on Primitive

Culture Tylor has studied the sorcery, superstitions,

and miracle-belief of savage peoples, and compared

them with the opinions current in mediaeval times con-

cerning witchcraft. The similarity is indeed striking.

The burning of witches, which was so frequent in

Europe in the sixteenth and seventeenth centuries, is

to-day vigorously conducted in Central Africa. Even

now and in civilised countries and among cultivated

people traces of these conditions, as Tylor shows, still

exist in a multitude of usages, the sense of which, with

our altered point of view, has been forever lost.

8. Physical science rid itself only very slowly of

these conceptions. The celebrated work of Giambatista

della Porta, Magia naturalis, which appeared in 1558,

though it announces important physical discoveries, is

yet filled with stuff about magic practices and demono-

logical arts of all kinds little better than those of a red-

skin medicine-man. Not till the appearance of Gil-

bert's work, De magnete (in 1600), was any kind of re-
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striction placed on this tendency of thought. When we Animistic
. .

notions in

reflect that even Luther is said to have had personal science,

encounters with the Devil, that Kepler, whose aunt had

been burned as a witch and whose mother came near

meeting the same fate, said that witchcraft could not

be denied, and dreaded to express his real opinion of

astrology, we can vividly picture to ourselves the

thought of less enlightened minds of those ages.

Modern physical science also shows traces of fetish-

ism, as Tylor well remarks, in its " forces." And the

hobgoblin practices of modern spiritualism are ample

evidence that the conceptions of paganism have not

been overcome even by the cultured society of to-day.

It is natural that these ideas so obstinately assert

themselves. Of the many impulses that rule man
with demoniacal power, that nourish, preserve, and

propagate him, without his knowledge or supervision,

of these impulses of which the middle ages present

such great pathological excesses, only the smallest

part is accessible to scientific analysis and conceptual

knowledge. The fundamental character of all these

instincts is the feeling of our oneness and sameness

with nature ; a feeling that at times can be silenced

but never eradicated by absorbing intellectual occupa-

tions, and which certainly has a sound basis, no matter

to what religious absurdities it may have given rise.

9. The French encyclopaedists of the eighteenth

century imagined they were not far from a final ex-

planation of the world by physical and mechanical prin-

ciples ; Laplace even conceived a mind competent to

foretell the progress of nature for all eternity, if but the

masses, their positions, and initial velocities were given.

In the eighteenth century, this joyful overestimation of

the scope of the new physico-mechanical ideas is par-
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Ove-esti-
mation of
the me-
chanical
view.

Pretensions
and atti-

tude of
physical
science.

donable. Indeed, it is a refreshing, noble, and ele-

vating spectacle ; and we can deeply sympathise with

this expression of intellectual joy, so unique in history.

But now, after a century has elapsed, after our judg-

ment has grown more sober, the world-conception of the

encyclopaedists appears to us as a mechanical mythology

in contrast to the animistic of the old religions. Both

views contain undue and fantastical exaggerations of

an incomplete perception. Careful physical research

will lead, however, to an analysis of our sensations.

We shall then discover that our hunger is not so essen-

tially different from the tendency of sulphuric acid for

zinc, and our will not so greatly different from the

pressure of a stone, as now appears. We shall again

feel ourselves nearer nature, without its being neces-

sary that we should resolve ourselves into a nebulous

and mystical mass of molecules, or make nature a

haunt of hobgoblins. The direction in which this en-

lightenment is to be looked for, as the result of long

and painstaking research, can of course only be sur-

mised. To anticipate the result, or even to attempt to

introduce it into any scientific investigation of to-day,

would be mythology, not science.

Physical science does not pretend to be a complete

view of the world ; it simply claims that it is working

toward such a complete view in the future. The high-

est philosophy of the scientific investigator is precisely

this toleration of an incomplete conception of the world

and the preference for it rather than an apparently per-

fect, but inadequate conception. Our religious opin-

ions are always our own private affair, as long as we do

not obtrude them upon others and do not apply them

to things which come under the jurisdiction of a differ-

ent tribunal. Physical inquirers themselves entertain
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the most diverse opinions on this subject, according to

the range of their intellects and their estimation of the

consequences.

Physical science makes no investigation at all into

things that are absolutely inaccessible to exact investi-

gation, or as yet inaccessible to it. But should prov-

inces ever be thrown open to exact research which are

now closed to it, no well-organised man, no one who

cherishes honest intentions towards himself and others,

will any longer then hesitate to countenance inquiry

with a view to exchanging his opinion regarding such

provinces for positive knowledge of them.

When, to-day, we see society waver, see it change Results of
7 J '

%

J the incoiu-

its views on the same question according to its mood and pieteness of
our view of

the events of the week, like the register of an organ, when the world.

we behold the profound mental anguish which is thus

produced, we should know that this is the natural and

necessary outcome of the incompleteness and transi-

tional character of our philosophy. A competent view

of the world can never be got as a gift ; we must ac-

quire it by hard work. And only by granting free sway

to reason and experience in the provinces in which they

alone are determinative, shall we, to the weal of man-

kind, approach, slowly, gradually, but surely, to that

ideal of a monistic view of the world which is alone

compatible with the economy of a sound mind.

in.

ANALYTICAL MECHANICS.

i . The mechanics of Newton are purely geometrical. The geo-

... .
metrical

He deduces his theorems from his initial assumptions mechanics
of Newton.

entirely by means of geometrical constructions. His

procedure is frequently so artificial that, as Laplace
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remarked, it is unlikely that the propositions were dis-

covered in that way. We notice, moreover, that the

expositions of Newton are not as candid as those of

Galileo and Huygens. Newton's is the so-called syn-

thetic method of the ancient geometers.

Analytic When we deduce results from given suppositions,

the procedure is called synthetic. When we seek the

conditions of a proposition or of the properties of a fig-

ure, the procedure is analytic. The practice of the latter

method became usual largely in consequence of the

application of algebra to geometry. It has become

customary, therefore, to call the algebraical method

generally, the analytical. The term " analytical me-

chanics," which is contrasted with the synthetical, or

geometrical, mechanics of Newton, is the exact equiva-

lent of the phrase "algebraical mechanics.

"

Euier and 2. The foundations of analytical mechanics were
INI ac 1 an

-

laid by Euler (Mechanica, sive Motus Scicntia Analyticerm s con-
tributions

Exposita, St. Petersburg, 1736). But while Euler's

method, in its resolution of curvilinear forces into tan-

gential and normal components, still bears a trace of

the old geometrical modes, the procedure of Maclaurin

(A Complete System ofFluxions, Edinburgh, 1742) marks

a very important advance. This author resolves all

forces in three fixed directions, and thus invests the

computations of this subject with a high degree of

symmetry and perspicuity.

Lagrange's 3. Analytical mechanics, however, was brought to
perfection .^ j^g^est degree f perfection by Lagrange. La-

grange's aim is (Mecanique analytique, Paris, 1788) to

dispose oncefor all of the reasoning necessary to resolve

mechanical problems, by embodying as much as pos-

sible of it in a single formula. This he did. Every case

that presents itself can now be dealt with by a very

science.
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simple, highly symmetrical and perspicuous schema
;

and whatever reasoning is left is performed by purely

mechanical methods. The mechanics of Lagrange

is a stupendous contribution to the economy of

thought.

In statics, Lagrange starts from the principle of statics
' b b

. .
founded on

virtual velocities. On a number of material points the princi-
ples ot vir-

///,, ///„, ;//„. .... definitely connected with one another, tuai veioci-
1

.
* 7 j > -j

t i es>

are impressed the forces P\, P2 , P\. . . . If these

points receive any infinitely small displacements p lf

p 2 , J> s
. . . . compatible with the connections of the sys-

tem, then for equilibrium ^2Pp = ; where the well-

known exception in which the equality passes into an

inequality is left out of account.

Now refer the whole system to a set of rectangular

coordinates. Let the coordinates of the material points

be x
t , y 19 z

t
, x 2 , y 2 , z

2
. . . . Resolve the forces into

the components X
± , Yx , Z19 X2 , Y2 , Z2

. . . . parallel

to the axes of coordinates, and the displacements into

the displacements dx^ 6y iy
dz

± , dx 2 , 6y 2 , dz
2

. . . .,

also parallel to the axes. In the determination of the

work done only the displacements of the point of appli-

cation in the direction of each force-component need

be considered for that component, and the expression

of the principle accordingly is

Z(X6x + Ydy+ Z$z) = () (1)

where the appropriate indices are to be inserted for

the points, and the final expressions summed.

The fundamental formula of dynamics is derived Dynamics
on the prin-

from D'Alembert's principle. On the material points cipie of
*

#

A
#

D'Alem-

m 19 m 2 , m 2
. . . ., having the coordinates x lf y ± , z v x

2 ,
bert.

>' 9 , z
2

. . . . the force-components X
± , Y± , Z ±

, X2 , Y2 ,

Z
2

. . . . act. But, owing to the connections of the
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system's parts, the masses undergo accelerations, which

are those of the forces.

d2 x, d*v. d2 z.

These are called the effective forces. But the impressed

forces, that is, the forces which exist by virtue of the

laws of physics, X, Y, Z. . . . and the negative of these

effective forces are, owing to the connections of the

system, in equilibrium. Applying, accordingly, the

principle of virtual velocities, we get

^—<;SM=" (2>

Discussion 4. Thus, Lagrange conforms to tradition in making

grange's statics precede dynamics. He was by no means com-

pelled to do so. On the contrary, he might, with equal

propriety, have started from the proposition that the

connections, neglecting their straining, perform no

work, or that all the possible work of the system is due

to the impressed forces. In the latter case he would

have begun with equation (2), which expresses this

fact, and which, for equilibrium (or non-accelerated

motion) reduces itself to (1) as a particular case. This

would have made analytical mechanics, as a system,

even more logical.

Equation (i), which for the case of equilibrium

makes the element of the work corresponding to the

assumed displacement = 0, gives readily the results

discussed in page 69. If

dx dy dz
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that is to say, if X, Y, Z are the partial differential co-

efficients of one and the same function of the coordi-

nates of position, the whole expression under the sign

of summation is the total variation, S V, of V. If the

latter is — 0, Fis in general a maximum or a minimum.

5. We will now illustrate the use of equation (1) by^^
a simple example. If all the points of application of the f£**v*^m

forces are independent of each other, no problem istjonof^

presented. Each point is then in equilibrium only lems.

when the forces impressed on it, and consequently

their components, are = 0. All the displacements Sx,

Sy, Sz. . . . are then wholly arbitrary, and equation

(1) can subsist only provided the coefficients of all the

displacements Sx, Sy, Sz. . . . are equal to zero.

But if equations obtain between the coordinates of

the several points, that is to say, if the points are sub-

ject to mutual constraints, the equations so obtaining

will be of the form F(x\, y 19 z
x ,

x
2 , y 2 ,

z
2 . . . .) = 0,

or, more briefly, of the form F= 0. Then equations

also obtain between the displacements, of the form

's**
1 + ¥sv 1 + £** 1 + £-** a + .... = o.

dx
1

* dy
x

dz
1

ax
2

which we shall briefly designate as DF= 0. If the

system consist of 11 points, we shall have 30 coordi-

nates, and equation (1) will contain 30 magnitudes

Sx, Sv, Sz. . . . If, further, between the coordinates

m equations of the form F= subsist, then ;;/ equa-

tions of the form DF= will be simultaneously given

between the variations Sx, Sy, Sz. . . . By these

equations ;;/ variations can be expressed in terms of the

remainder, and so inserted in equation (1). In (1),

therefore, there are left 3/1— ;// arbitrary displace-

ments, whose coefficients are put = 0. There are thus
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A statical

example.

obtained between the forces and the coordinates 3 n— m
equations, to which the m equations {F= 0) must be

added. We have, accordingly, in all, 3/z equations,

which are sufficient to determine the 3^ coordinates of

the position of equilibrium, provided the forces are

given and only the form of the system's equilibrium is

sought.

But if the form of the system is given and theforces

are sought that maintain equilibrium, the question is

indeterminate. We have then, to determine 3 n force-

components, only 3^ — m equa-

tions; the m equations (F= 0)

not containing the force-compo-

nents.

As an example of this man-
ner of treatment we shall select

a lever OM= a, free to rotate

about the origin of coordinates

in the plane XY, and having at its end a second, simi-

lar lever MN=b. At M and JV, the coordinates of

which we shall call x, y and x 1} yv the forces X, Fand
X19 Y1

are applied. Equation (1), then, has the form

XSx + X1
Sx

1 + YSy + Y
1 6y 1

= . . . (3)

Of the form F=0 two equations here exist ; namely,

X 2 _|_ j;2__^2 = o
j

Fig. 232.

W
(Xl — Xy +(j l —yy — d» = o

The equations DF= 0, accordingly, are

x (J x -\- y Sy = \

{x
1
— x) Sx

x
— (x

1
— x) 8x + (jj — j) 6y 1

— V . (5)

Here, two of the variations in (5) can be expressed

in terms of the others and introduced in (3). Also for
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purposes of elimination Lagrange employed a per- Lagrange's

f 1
• r 1 • ^ 1 • 1

indetermi-
lectly uniform and systematic procedure, which maynatecoeffi-

be pursued quite mechanically, without reflection. We
shall use it here. It consists in multiplying each of the

equations (5) by an indeterminate coefficient A, jjl, and

adding each in this form to (3). So doing, we obtain

[A'+A.v—u\x
x
— x)\8x +[X

x
-\-iA(x

1
— x)']dx

x )

The coefficients of the four displacements may now
be put directly — 0. For two displacements are ar-

bitrary, and the two remaining coefficients may be

made equal to zero by the appropriate choice of A and

//—which is tantamount to an elimination of the two

remaining displacements.

We have, therefore, the four equations

X+\x — }.i(x
1
—x) = Q

^

X
t + M (x

t
—x) = i)

y -r hy — Mb'i —y) = {)

y
l + M(y*—y) = o

We shall first assume that the coordinates are given,

and seek the forces that maintain equilibrium. The
values of A and pi are each determined by equating to

zero two coefficients. We get from the second and

fourth equations,

— X
x

—Y
x

fx = —, and jx -.
— --1-

(6)

x i-
whence

*t x
x
— x

y\
~~

y x
—y

}'i —y

(7)

that is to say, the total component force impressed at

N has the direction MN. From the first and third

equations we get
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— x+ ti {x, — x) - __ — y+ vO't—y)
Their em- A= —

>
A — " '"

>

ployment in X J
the deter-
mination of anc[ from these by simple reduction
the final J

equation. X+X^ _X /gx

"F+r^-y
that is to say, the resultant of the forces applied at M
and N acts in the direction OM. *

The/^r force-components are accordingly subject

to only two conditions, (7) and (8). The problem, con-

sequently, is an indeterminate one ; as it must be from

the nature of the case ; for equilibrium does not depend

upon the absolute magnitudes of the forces, but upon

their directions and relations.

If we assume that the forces are given and seek the

four coordinates, we treat equations (6) in exactly the

same manner. Only, we can now make use, in addi-

tion, of equations (4). Accordingly, we have, upon the

elimination of X and yu, equations (7) and (8) and two

equations (4). From these the following, which fully

solve the problem, are readily deduced •

a(X+X
± )

x =

y
a(Y+ Y,)

V(x+x^+W+'^ 2

* The mechanical interpretation of the indeterminate coefficients h fl may

be shown as follows. Equations (6) express the equilibrium of twofree points

on which in addition to X, V, Xt , l\ other forces act which answer to the re-

maining expressions and just destroy X, Y,XU V± . The point N, for example,

is in equilibrium if Xt is destroyed by a force \i\x^-x\ undetermined as yet

in magnitude, and F, by a force p {y t -y). This supplementary force is due

to the constraints. Its direction is determined ;
though its magnitude is not.

If we call the angle which it makes with the axis of abscissas a, we shall have

\i{y\—y) y\—y
tana = --.

: = - -

-

\i\x
v
—.x) x^ — x

that is to say, the force due to the connections acts in the direction of I.
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<* (^±_^l).
I

—± Character
^i

" """..~'7-"7- — ' /--»:- T ^> of the pres-

i/(a:+ jro 2 + ( F+ yi)
2 l x i + y

i
STr„

prob ~

Jl
"" i/(X + jrl)2 + cy + y^ vx\ + y\

Simple as this example is, it is yet sufficient to give

us a distinct idea of the character and significance of

Lagrange's method. The mechanism of this method is

excogitated once for all, and in its application to par-

ticular cases scarcely any additional thinking is re-

quired. The simplicity of the example here selected

being such that it can be solved by a mere glance at

the figure, we have, in our study of the method, the

advantage of a ready verification at every step.

6 We will now illustrate the application of equa- Generalw * x steps for

tion (2), which is Lagrange's form of statement of Uiesoiudon

D'Alembert's principle. There is no problem when icai^rob-

the masses move quite independently of one another.

Each mass yields to the forces applied to it ; the va-

riations dx, 8y, dz . . . . are wholly arbitrary, and each

coefficient may be singly put = 0. For the motion of

n masses we thus obtain 3/z simul-

taneous differential equations.

But if equations of condition

(F= 0) obtain between the coordi-

nates, these equations will lead to

others (DF=Q) between the dis-

placements or variations. With the
p

.

g ^
latter we proceed exactly as in the

application of equation (1). Only it must be noted

here that the equations F= must eventually be em-

ployed in their undifferentiated as well as in their dif-

ferentiated form, as will best be seen from the follow-

ing example.
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a dynam- A heavy material point m, lying in a vertical plane
ical exam- X _ T _ . . .... • i* j
pie. XY, is free to move on a straight line, y = ax, inclined

at an angle to the horizon. (Fig. 233.) Here equa-

tion (2) becomes

and, since X=0, and Y=— mg, also

£t*' + (* +^>= ° (»)

The place of F= is taken by

y = ax (10)

and for DF= we have

Sy = a S x.

Equation (9), accordingly, since dy drops out and

dx is arbitrary, passes into the form

dt 2 ^
V
^ dt 2

]

By the differentiation of (10), or (F= 0), we have

d2y d2 x

~df2
= a

It 2 '

and, consequently,

£+«('+'£)-• <">

Then, by the integration of (11), we obtain

and
a 2 /2

J
1 + a 2 * 2

^ ^ '

where ^ and <r are constants of integration, determined

by the initial position and velocity of in. This result

can also be easily found by the direct method.
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Some care is necessary in the application of equa- a modifica-

/ . f . . . tion of this
tion (1) 11 Jr1 = contains the time. The procedure in example,

such cases may be illustrated by the following example.

Imagine in the preceding case the straight line on

which ;;/ descends to move vertically upwards with the

acceleration y. We start again from equation (9)

F= is here replaced by

y = ax + r — (12)

To form DF= 0, we vary (12) only with respect to x
and y, for wre are concerned here only with the possible

displacement of the system in its position at any given

instant, and not with the displacement that actually

takes place in time. We put, therefore, as in the pre-

vious case,

6y = adx9

and obtain, as before,

d 2 x ( d 2 v\

But to get an equation in x alone, we have, since x
and y are connected in (13) by the actual motion, to

differentiate (12) with respect to / and employ the re-

sulting equation

d 2y d 2 x

for substitution in (13). In this way the equation

is obtained, which, integrated, gives
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y- r—

1 -f a 2

a 2

(g+Y^+bt + t

t 2

»U+r) -f- abt-\- ac.
1 -f a 2

If a weightless body m lie on the moving straight

line, we obtain these equations

I 2

y:

1'+ a'

r

r T + tt + '

/2

9 -f- <2 <£ / -f tf <f,

of the mod- .

itied exam
pie.

01

1 -f a 2 _

—results which are readily understood, when we re-

flect that, on a straight line moving upwards with the

acceleration y, m behaves as if it were affected with a

downward acceleration y on the straight line at rest.

Discussion 7. The procedure with equation (12) in the preced-

ing example may be rendered somewhat clearer by the

following consideration. Equation (2), D'Alembert's

principle, asserts, that all the work

that can be done in the displacement

of a system is done by the impressed

forces and not by the connections. This

is evident, since the rigidity of the con-

nections allows no changes in the rela-

tive positions which would be neces-

sary for any alteration in the potentials of the elastic

forces. But this ceases to be true when the connec-

tions undergo changes in time. In this case, the changes

of the connections perform work, and we can then ap-

ply equation (2) to the displacements that actually take

place only provided we add to the impressed forces the

forces that produce the changes of the connections.

A heavy mass m is free to move on a straight line

parallel to OY (Fig. 234.) Let this line be subject to

Fig. 234.
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a forced acceleration in the direction of x, such that illustration
of the mod-

the equation J?=Q becomes ified exam-
1 pie.

* = Y*-l>
(U )

D'Alembert's principle again gives equation (9).

But since from DF= it follows here that 6x = 0,

this equation reduces itself to

• + d
.

2Asv = (15)

in which Sy is wholly arbitrary. Wherefore,

d'1 V

and

*+ dt*

y = --?/--+ at + b,

to which must be supplied (14) or

/ 2

x = y 2
-

It is patent that (15) does not assign the total work

of the displacement that actually takes place, but only

that of some possible displacement on the straight line

conceived, for the moment, as fixed.

If we imagine the straight line massless, and cause

it to travel parallel to itself in some guiding mechan-

ism moved by a force m y, equation (2) will be re-

placed by

[>» r — m 7/2J
dx + [— ms

—

m
7/2 fy = °>

and since 6 x, dy are wholly arbitrary here, we obtain

the two equations

d*x
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6 dt*

which give the same results as before. The apparently

different mode of treatment of these cases is simply the

result of a slight inconsistency, springing from the fact

that all the forces involved are, for reasons facilitating

calculation, not included in the consideration at the

outset, but a portion is left to be dealt with subse-

quently.

Deduction 8. As the different mechanical principles only ex-

?ipie
e
of

r

i£ press different aspects of the same fact, any one of

LTgrange's them is easily deducible from any other
;
as we shall

tfrdymam- now illustrate by developing the principle of vis viva

don.
equa " from equation (2) of page 468. Equation (2) refers to

instantaneously possible displacements, that is, to "vir-

tual " displacements. But when the connections of a

system are independent of the time, the motions that

actually takeplace are "virtual " displacements. Conse-

quently the principle may be applied to actual motions.

For Sx
9
Sy, 8z, we may, accordingly, write dx, dy,

dz, the displacements which take place in time, and

put

2 (Xdx + Ydy + Zdz) =

The expression to the right may, by introducing for

dx, (dx/dt) dt and so forth, and by denoting the velo-

city by v, also be written

(d*xdx d*ydy d*zdz \_
2m

[-dW dt
dt + It* Tt

dt + d* 'dt
dt)-

%d2m &)•+ (£)•+(£)" ^d^Emv 2
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Also in the expression to the left, (dx/df) dt may be Force-

written for dx. But this gives

C2 {Xdx + Ydy + Zdz) = 2%m {v 2 — v%)\

where v denotes the velocity at the beginning and v

the velocity at the end of the motion. The integral to the

left can always be found if we can reduce it to a single

variable, that is to say, if we know the course of the

motion in time or the paths which the movable points

describe. If, however, X, Y, Z are the partial differ-

ential coefficients of the same function Uoi coordinates,

if, that is to say,

dU dU dU
dx dy dz

as is always the case when only central forces are in-

volved, this reduction is unnecessary. The entire ex-

pression to the left is then a complete differential. And

we have

which is to say, the difference of the force-functions

(or work) at the beginning and the end of the motion

is equal to the difference of the vires vivce at the be-

ginning and the end of the motion. The vires vivce are

in such case also functions of the coordinates.

In the case of a body movable in the plane of X
and Fsuppose, for example, X=— y, Y= — x ; we

then have

j^—ydx — xdy) = —Jd(xy) =

But if X=— a, Y=z — x, the integral to the left is

C(a dx -f- x dy). This integral can be assigned the

moment we know the path the body has traversed, that
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Essential
character
of analyt-
ical me-
chanics.

is, if y is determined a function of x. If, for example,

y =j>x 2
, the integral would become

2 fy (x X
s

)
3

— C{a + 2/>x 2)Jx = a (x — x) + -Ul~A
^
—-~-

The difference of these two cases is, that in the first

the work is simply a function of coordinates, that a

force-function exists, that the element of the work is a

complete differential, and the work consequently is de-

termined by the initial and final values of the coordi-

nates, while in the second case it is dependent on the

entire path described.

9. These simple examples, in themselves present-

ing no difficulties, will doubtless suffice to illustrate the

general nature of the operations of analytical mechan-

ics. No fundamental light can be expected from this

branch of mechanics. On the contrary, the discovery

of matters of principle must be substantially completed

before we can think of framing analytical mechanics
;

the sole aim of which is a perfect practical mastery of

problems. Whosoever mistakes this situation, will

never comprehend Lagrange's great performance, which

here too is essentially of an economical character. Poin-

sot did not altogether escape this error.

It remains to be mentioned that as the result of the

labors of Mobius, Hamilton, Grassmann, and others, a

new transformation of mechanics is preparing. These

inquirers have developed mathematical conceptions

that conform more exactly and directly to our geomet-

rical ideas than do the conceptions of common analyt-

ical geometry ; and the advantages of analytical gene-

rality and direct geometrical insight are thus united.

But this transformation, of course, lies, as yet, beyond

the limits of an historical exposition. (See p. 577.)
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THE ECONOMY OF SCIENCE.

1. It is the object of science to replace, or save, ex- The basis

. ... . of science.

periences, by the reproduction and anticipation of facts economy o*.,!•-, - thought.

in thought. Memory is handier than experience, and

often answers the same purpose. This economical

office of science, which fills its whole life, is apparent

at first glance ; and with its full recognition all mys-

ticism in science disappears.

Science is communicated by instruction, in order

that one man may profit by the experience of another

and be spared the trouble of accumulating it for him-

self ; and thus, to spare posterity, the experiences of

whole generations are stored up in libraries.

Language, the instrument of this communication, The eco-

,
. • 1 < • -r* nomical

is itself an economical contrivance, iixpenences are character

analysed, or broken up, into simpler and more familiar guage.

experiences, and then symbolised at some sacrifice of

precision. The symbols of speech are as yet restricted

in their use within national boundaries, and doubtless

will long remain so. But written language is gradually

being metamorphosed into an ideal universal character.

It is certainly no longer a mere transcript of speech.

Numerals, algebraic signs, chemical symbols, musical

notes, phonetic alphabets, may be regarded as parts

already formed of this universal character of the fu-

ture ; they are, to some extent, decidedly conceptual,

and of almost general international use. The analysis

of colors, physical and physiological, is already far

enough advanced to render an international system of

color-signs perfectly practical. In Chinese writing,
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Possibility we have an actual example of a true ideographic Ian

s!uaT
ver

"
guage, pronounced diversely in different provinces, yet

guaRe
" everywhere carrying the same meaning. Were the

system and its signs only of a simpler character, the

use of Chinese writing might become universal. The

dropping of unmeaning and needless accidents of gram-

mar, as English mostly drops them, would be quite

requisite to the adoption of such a system. But uni-

versality would not be the sole merit of such a char-

acter ; since to read it would be to understand it. Our

children often read what they do not understand ;
but

that which a Chinaman cannot understand, he is pre-

cluded from reading.

Econom- 2. In the reproduction of facts in thought, we

lefofai? " never reproduce the facts in full, but only that side of

semadons them which is important to us, moved to this directly

XorM. or indirectly by a practical interest. Our reproductions

are invariably abstractions. Here again is an econom-

ical tendency.

Nature is composed of sensations as its elements.

Primitive man, however, first picks out certain com-

pounds of these elements—those namely that are re-

latively permanent and of greater importance to him.

The first and oldest words are names of " things."

Even here, there is an abstractive process, an abstrac-

tion from the surroundings of the things, and from the

continual small changes which these compound sensa-

tions undergo, which being practically unimportant are

not noticed. No inalterable thing exists. The thing

is an abstraction, the name a symbol, for a compound

of elements from whose changes we abstract. The

reason we assign a single word to a whole compound is

that we need to suggest all the constituent sensations

at once. When, later, we come to remark the change-
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ableness, we cannot at the same time hold fast to the

idea of the thing's permanence, unless we have recourse

to the conception of a thing-in-itself, or other such like

absurdity. Sensations are not signs of things ; but, on

the contrary, a thing is a thought-symbol for a com-

pound sensation of relative fixedness. Properly speak-

ing the world is not composed of "things" as its ele-

ments, but of colors, tones, pressures, spaces, times,

in short what we ordinarily call individual sensations.

The whole operation is a mere affair of economy.

In the reproduction of facts, we begin with the more

durable and familiar compounds, and supplement these

later with the unusual by way of corrections. Thus,

we speak of a perforated cylinder, of a cube with bev-

eled edges, expressions involving contradictions, un-

less we accept the view here taken. All judgments are

such amplifications and corrections of ideas already

admitted.

3. In speaking of cause and effect we arbitrarily The ideas
J jro

^ cause and

give relief to those elements to whose connection we effect,

have to attend in the reproduction of a fact in the re-

spect in which it is important to us. There is no cause

nor effect in nature ; nature has but an individual exis-

tence ; nature simply is. Recurrences of like cases in

which A is always connected with B, that is, like results

under like circumstances, that is again, the essence of the

connection of cause and effect, exist but in the abstrac-

tion which we perform for the purpose of mentally re-

producing the facts. Let a fact become familiar, and

we no longer require this putting into relief of its con-

necting marks, our attention is no longer attracted to

the new and surprising, and we cease to speak of cause

and effect. Heat is said to be the cause of the tension

of steam ; but when the phenomenon becomes familiar
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we think of the steam at once with the tension proper

to its temperature. Acid is said to be the cause of the

reddening of tincture of litmus ; but later we think of

the reddening as a property of the acid.

Hume, Hume first propounded the question, How can a
Kant, and

.

r tr t.
.

Schopen- thing A act on another thing B? Hume, in fact, re-
hauer's ex- , ......
pianations jects causality and recognises only a wonted succes-
of cause

.

and effect, sion in time. Kant correctly remarked that a necessary

connection between A and B could not be disclosed by

simple observation. He assumes an innate idea or

category of the mind, a Verstandcsbegriff, under which

the cases of experience are subsumed. Schopenhauer,

who adopts substantially the same position, distin-

guishes four forms of the "principle of sufficient rea-

son"—the logical, physical, and mathematical form,

and the law of motivation. But these forms differ only

as regards the matter to which they are applied, which

may belong either to outward or inward experience.

Cause and The natural and common-sense explanation is ap-

economicai parently this. The ideas of cause and effect originally

oTthought.
s

sprang from an endeavor to reproduce facts in thought.

At first, the connection of A and B, of C and D, of E
and F, and so forth, is regarded as familiar. But after

a greater range of experience is acquired and a con-

nection between M and N is observed, it often turns

out that we recogniseM as made up of A, C, E, and N
of By

Z>, E, the connection of which was before a fa-

miliar fact and accordingly possesses with us a higher

authority. This explains why a person of experience

regards a new event with different eyes than the nov-

ice. The new experience is illuminated by the mass

of old experience. As a fact, then, there really does

exist in the mind an "idea" under which fresh experi-

ences are subsumed ; but that idea has itself been de-
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veloped from experience. The notion of the necessity

of the causal connection is probably created by our

voluntary movements in the world and by the changes

which these indirectly produce, as Hume supposed but

Schopenhauer contested. Much of the authority of

the ideas of cause and effect is due to the fact that they

are developed instinctively and involuntarily, and that

we are distinctly sensible of having personally con-

tributed nothing to their formation. We may, indeed,

say, that our sense of causality is not acquired by the

individual, but has been perfected in the develop-

ment of the race. Cause and effect, therefore, are

things of thought, having an economical office. It can-

not be said why they arise. For it is precisely by the

abstraction of uniformities that we know the question

"why." (See Appendix, XXVI, p. 579.)

4. In the details of science, its economical character Econom-
^ ... ical fea-

is still more apparent. The so-called descriptive sci- tures of
A x

. .
.all laws of

ences must chiefly remain content with reconstructing nature,

individual facts. Where it is possible, the common fea-

tures of many facts are once for all placed in relief. But

in sciences that are more highly developed, rules for the

reconstruction of great numbers of facts may be embod-

ied in a single expression. Thus, instead of noting indi-

vidual cases of light-refraction, we can mentally recon-

struct all present and future cases, if we know that the

incident ray, the refracted ray, and the perpendicular

lie in the same plane and that sin a/sin (3= n. Here,

instead of the numberless cases of refraction in different

combinations of matter and under all different angles

of incidence, we have simply to note the rule above

stated and the values of ;/,—which is much easier. The

economical purpose is here unmistakable. In nature

there is no law of refraction, only different cases of re-
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fraction. The law of refraction is a concise compen-

dious rule, devised by us for the mental reconstruction

of a fact, and only for its reconstruction in part, that

is, on its geometrical side.

The econ- 5. The sciences most highly developed economically
omv of the
niathemat- are those whose tacts are reducible to a tew numerable
lCcil sci-

ences. elements of like nature. Such is the science of mechan-

ics, in which we deal exclusively with spaces, times,

and masses. The whole previously established econ-

omy of mathematics stands these sciences in stead.

Mathematics may be defined as the economy of count-

ing. Numbers are arrangement-signs which, for the

sake of perspicuity and economy, are themselves ar-

ranged in a simple system. Numerical operations, it

is found, are independent of the kind of objects operated

on, and are consequently mastered once for all. When,

for the first time, I have occasion to add five objects to

seven others, I count the whole collection through, at

once ; but when I afterwards discover that I can start

counting from 5, I save myself part of the trouble

;

and still later, remembering that 5 and 7 always count

up to 12, I dispense with the numeration entirely.

Arithmetic The object of all arithmetical operations is to save

bra.
a ge

direct numeration, by utilising the results of our old

operations of counting. Our endeavor is, having done

a sum once, to preserve the answer for future use. The
first four rules of arithmetic well illustrate this view.

Such, too, is the purpose of algebra, which, substitut-

ing relations for values, symbolises and definitively

fixes all numerical operations that follow the same rule.

For example, we learn from the equation

x 2 — y 2— - — = x — y,x+y J '
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that the more complicated numerical operation at the

left may always be replaced by the simpler one at the

right, whatever numbers x and y stand for. We thus

save ourselves the labor of performing in future cases

the more complicated operation. Mathematics is the

method of replacing in the most comprehensive and

economical manner possible, new numerical operations

by old ones done already with known results. It may
happen in this procedure that the results of operations

are employed which were originally performed centu-

ries ago.

Often operations involving intense mental effort The theoryr ... ofdeter-

may be replaced by the action of semi-mechanical minants.

routine, with great saving of time and avoidance of

fatigue. For example, the theory of determinants

owes its origin to the remark, that it is not necessary

to solve each time anew equations of the form

a
x
x -f- b

A
y -|- c

A
=

a
2
x -J- b

2 y -f c
2
= 0,

from which result

a
x

b
2
— a 2 ^

1
^

^ ~~
a

x
b

2
— a

2
b

y

~~~ N'
but that the solution may be effected by means of the

coefficients, by writing down the coefficients according

to a prescribed scheme and operating with them me-

chanically. Thus,

\

= a
x
b
2
— a

2
b

x
=N

P, and" 1 ^ != Q.

!«,,<S
a<

s

b
-i

and s:imilarly
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Calculating Even a total disburdening of the mind can be ef-

fected in mathematical operations. This happens where

operations of counting hitherto performed are symbol-

ised by mechanical operations with signs, and our brain

energy, instead of being wasted on the repetition of

old operations, is spared for more important tasks.

The merchant pursues a like economy, when, instead

of directly handling his bales of goods, he operates

with bills of lading or assignments of them. The

drudgery of computation may even be relegated to a

machine. Several different types of calculating ma-

chines are actually in practical use. The earliest of

these (of any complexity) was the difference-engine of

Babbage, who was familiar with the ideas here pre-

sented,

other ab- A numerical result is not always reached by the

method" of actual solution of the problem ; it may also be reached

resuks
ng

indirectly. It is easy to ascertain, for example, that a

curve whose quadrature for the abscissa x has the value

x"1

,
gives an increment mx m ~ l dx of the quadrature for

the increment dx of the abscissa. But we then also know

that Cmx m ~ l dx = xm ; that is, we recognise the quan-

tity xm from the increment mx m ~ 1 dx as unmistakably

as we recognise a fruit by its rind. Results of this

kind, accidentally found by simple inversion, or by

processes more or less analogous, are very extensively

employed in mathematics.

That scientific work should be more useful the more

it has been used, while mechanical work is expended in

use, may seem strange to us. When a person who

daily takes the same walk accidentally finds a shorter

cut, and thereafter, remembering that it is shorter, al-

ways goes that way, he undoubtedly saves himself the

difference of the work. But memory is really not work.
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It only places at our disposal energy within our present

or future possession, which the circumstance of igno-

rance prevented us from availing ourselves of. This

is precisely the case with the application of scientific

ideas.

The mathematician who pursues his studies with- Necessity
of clear

out clear views of this matter, must often have the views on
this sub-

uncomfortable feeling that his paper and pencil sur- ject.

pass him in intelligence. Mathematics, thus pursued

as an object of instruction, is scarcely of more educa-

tional value than busying oneself with the Cabala. On
the contrary, it induces a tendency toward mystery,

which is pretty sure to bear its fruits.

6. The science of physics also furnishes examples Examples

of this economy of thought, altogether similar to those omy of

we have just examined. A brief reference here will suf- physics,

fice. The moment of inertia saves us the separate con-

sideration o£ the individual particles of masses. By
the force-function we dispense with the separate in-

vestigation of individual force-components. The sim-

plicity of reasonings involving force-functions springs

from the fact that a great amount of mental work had

to be performed before the discovery of the properties

of the force-functions was possible. Gauss's dioptrics

dispenses us from the separate consideration of the

single refracting surfaces of a dioptrical system and

substitutes for it the principal and nodal points. But

a careful consideration of the single surfaces had to

precede the discovery of the principal and nodal points.

Gauss's dioptrics simply saves us the necessity of often

repeating this consideration.

We must admit, therefore, that there is no result of

science which in point of principle could not have been

arrived at wholly without methods. But, as a matter
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Science a of fact, within the short span of a human life and with

problem, man's limited powers of memory, any stock of knowl-

edge worthy of the name is unattainable except by the.

greatest mental economy. Science itself, therefore,

may be regarded as a minimal problem, consisting of

the completest possible presentment of facts with the

least possible expenditure of thought.

7. The function of science, as we take it, is to re-

place experience. Thus, on the one hand, science

must remain in the province of experience, but, on the

other, must hasten beyond it, constantly expecting con-

firmation, constantly expecting the reverse. Where

neither confirmation nor refutation is possible, science

is not concerned. Science acts and only acts in the

domain of uncompleted experience. Exemplars of such

branches of science are the theories of elasticity and

of the conduction of heat, both of which ascribe to the

smallest particles of matter only such properties as ob-

servation supplies in the study of the larger portions.

The comparison of theory and experience may be far-

ther and farther extended, as our means of observation

increase in refinement.

The princi- Experience alone, without the ideas that are asso-

tin

e
u?t

f

y?the dated with it, would forever remain strange to us.

3c°
fsci

" Those ideas that hold good throughout the widest do-

mains of research and that supplement the greatest

amount of experience, are the most scientific. The prin-

ciple of continuity, the use of which everywhere per-

vades modern inquiry, simply prescribes a mode of

conception which conduces in the highest degree to the

economy of thought.

8. If a long elastic rod be fastened in a vise, the

rod may be made to execute slow vibrations. These

are directly observable, can be seen, touched, and
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graphically recorded. If the rod be shortened, the Example ?i-
r J

. it lustrative

vibrations will increase in rapidity and cannot be di- of the
.

' method of

rectly seen ; the rod will present to the sight a blurred science,

image. This is a new phenomenon. But the sensa-

tion of touch is still like that of the previous case ; we

can still make the rod record its movements ; and if

we mentally retain the conception of vibrations, we can

still anticipate the results of experiments. On further

shortening the rod the sensation of touch is altered
;

the rod begins to sound ; again a new phenomenon is

presented. But the phenomena do not all change at

once; only this or that phenomenon changes ; conse-

quently the accompanying notion of vibration, which

is not confined to any single one, is still serviceable,

still economical. Even when the sound has reached

so high a pitch and the vibrations have become so

small that the previous means of observation are not

of avail, we still advantageously imagine the sounding

rod to perform vibrations, and can predict the vibra-

tions of the dark lines in the spectrum of the polarised

light of a rod of glass. If on the rod being further

shortened all the phenomena suddenly passed into new

phenomena, the conception of vibration would no

longer be serviceable because it would no longer afford

us a means of supplementing the new experiences by

the previous ones.

When we mentally add to those actions of a human

being which we can perceive, sensations and ideas like

our own which we cannot perceive, the object of the

idea we so form is economical. The idea makes ex-

perience intelligible to us ; it supplements and sup-

plants experience. This idea is not regarded as a great

scientific discovery, only because its formation is so

natural that every child conceives it. Now, this is
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exactly what we do when we imagine a moving body
which has just disappeared behind a pillar, or a comet
at the moment invisible, as continuing its motion and
retaining its previously observed properties. We do
this that we may not be surprised by its reappearance.

We fill out the gaps in experience by the ideas that

experience suggests.

ah scien- 9- Yet not all the prevalent scientific theories origi-

ories not nated so naturally and artlessly. Thus, chemical, elec-
founded on , • i 1.1-11 1 • 1 1

the pnnci- tncal, and optical phenomena are explained by atoms.

Snuity?
on

But the mental artifice atom was not formed by the

principle of continuity ; on the contrary, it is a pro-

duct especially devised for the purpose in view. Atoms
cannot be perceived by the senses ; like all substances,

they are things of thought. Furthermore, the atoms

are invested with properties, that absolutely contradict

the attributes hitherto observed in bodies. However
well fitted atomic theories may be to reproduce certain

groups of facts, the physical inquirer who has laid to

heart Newton's rules will only admit those theories as

provisional helps, and will strive to attain, in some more
natural way, a satisfactory substitute.

Atoms and The atomic theory plays a part in physics similar
other men- . ,

tai artifices, to that oi certain auxiliary concepts in mathematics
;

it is a mathematical model for facilitating the mental

reproduction of facts. Although we represent vibra-

tions by the harmonic formula, the phenomena of cool-

ing by exponentials, falls by squares of times, etc., no

one will fancy that vibrations in themselves have any-

thing to do with the circular functions, or the motion

of falling bodies with squares. It has simply been ob-

served that the relations between the quantities inves-

tigated were similar to certain relations obtaining be-

tween familiar mathematical functions, and these more
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familiar ideas are employed as an easy means of sup-

plementing experience. Natural phenomena whose re-

lations are not similar to those of functions with which

we are familiar, are at present very difficult to recon-

struct. But the progress of mathematics may facilitate

the matter.

As mathematical helps of this kind, spaces of more Muiti-
x diinen-

than three dimensions may be used, as I have else- sioned
spaces

where shown. But it is not necessary to regard these,

on this account, as anything more than mental arti-

fices.*

*As the outcome of the labors of Lobatchevski, Bolyai, Gauss, and Rie-

mann, the view has gradually obtained currency in the mathematical world,

that that which we call space is a particular, actual case of a more general,

conceivable case of multiple quantitative manifoldness. The space of sight

and touch is a threefold manifoldness; it possesses three dimensions ; and

every point in it can be defined by three distinct and independent data. But

it is possible to conceive of a quadruple or even multiple space-like manifold-

ness. And the character of the manifoldness may also be differently conceived

from the manifoldness of actual space. We regard this discovery, which is

chiefly due to the labors of Riemann, as a very important one. The properties

of actual space are here directly exhibited as objects of experience, and the

pseudo-theories of geometry that seek to excogitate these properties by meta-

physical arguments are overthrown.

A thinking being is supposed to live in the surface of a sphere, with no

other kind of space to institute comparisons with. His space will appear to

him similarly constituted throughout. He might regard it as infinite, and

could only be convinced of the contrary by experience. Starting from any two

points of a great circle of the sphere and proceeding at right angles thereto on

other great circles, he could hardly expect that the circles last mentioned

would intersect. So, also, with respect to the space in which we live, only ex-

perience can decide whether it is finite, whether parallel lines intersect in it.

or the like. The significance of this elucidation can scarcely be overrated.

An enlightenment similar to that which Riemann inaugurated in science was
produced in the mind of humanity at large, as regards the surface of the earth,

by the discoveries of the first circumnavigators.

The theoretical investigation of the mathematical possibilities above re-

ferred to, has, primarily, nothing to do with the question whether things really

exist which correspond to these possibilities; and we must not hold mathe-

maticians responsible for the popular absurdities which their investigations

have given rise to. The space of sight and touch is Mr^-dimensional ; that,

no one ever yet doubted. If, now, it should be found that bodies vanish from

this space, or new bodies get into it, the question might scientifically be dis-

cussed whether it would facilitate and promote our insight into things to con-

ceive experiential space as part of a four-dimensional or multi-dimensional
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Hypotheses This is the case, too, with all hypothesis formed

for the explanation of new phenomena. Our concep-

tions of electricity fit in at once with the electrical phe-

nomena, and take almost spontaneously the familiar

course, the moment we note that things take place as

if attracting and repelling fluids moved on the surface

of the conductors. But these mental expedients have

nothing whatever to do with the phenomenon itself.

(See Appendix, XXVII, p. 579-)

space. Yet in such a case, this fourth dimension would, none the less, remain

a pure thing of thought a mental fiction.

But this is not the way matters stand. The phenomena mentioned were

not forthcoming until after the new views were published, and were then ex-

hibited in the presence of certain persons at spiritualistic seances. The fourth

dimension was a very opportune discover^- for the spiritualists and for theo-

logians who were in a quandary about the location of hell. The use the spiri-

tualist makes of the fourth dimension is this. It is possible to move out of a

finite straight line, without passing the extremities, through the second dimen-

sion ; out of a finite closed surface through the third ; and, analogously, out

of a finite closed space, without passing through the enclosing boundaries,

through the fourth dimension. Even the tricks that prestidigitateurs, in the

old days, harmlessly executed in three dimensions, are now invested with a

new halo by the fourth. But the tricks of the spiritualists, the tying or untying

of knots in endless strings, the removing of bodies from closed spaces, are all

performed in cases where there is absolutely nothing at stake. All is purpose-

less jugglery. We have not yet found an accoucheur who has accomplished

parturition through the fourth dimension. If we should, the question would

at once become a serious one. Professor Simony's beautiful tricks in rope-

tying, which, as the performance of a prestidigitateur, are very admirable,

speak against, not for, the spiritualists.

Everyone is free to set up an opinion and to adduce proofs in support of

it. Whether, though, a scientist shall find it worth his while to enter into

serious investigations of opinions so advanced, is a question which his reason

and instinct alone can decide. If these things, in the end, should turn out to

be true, I shall not be ashamed of being the last to believe them. What I have

seen of them was not calculated to make me less sceptical.

I myself regarded multi-dimensioned spa^e as a mathematico-physical

help even prior to the appearance of Riemann's memoir. But 1 trust that

no one will employ what I have thought, said, and written on this subject as a

basis for the fabrication of ghost stories. (Compare Much, Die Ceschichte und

die IVurzel des Satzes von de*- ErhaUung de.r Arbeit.)



CHAPTER V.

THE RELATIONS OF MECHANICS TO OTHER DE-

PARTMENTS OF KNOWLEDGE,

i.

THE RELATIONS OF MECHANICS TO PHYSICS.

1. Purely mechanical phenomena do not exist. The The events
J x ot nature

production of mutual accelerations in masses is, to all do n
.

ot
f
x-

x
^

clusively

appearances, a purely dynamical phenomenon. But belon s. to

with these dynamical results are always associated ence -

thermal, magnetic, electrical, and chemical phenom-
ena, and the former are always modified in proportion,

as the latter are asserted. On the other hand, thermal,

magnetic, electrical, and chemical conditions also can

produce motions. Purely mechanical phenomena, ac-

cordingly, are abstractions, made, either intentionally

or from necessity, for facilitating our comprehension of

things. The same thing is true of the other classes of

physical phenomena. Every event belongs, in a strict

sense, to all the departments of physics, the latter be-

ing separated only by an artificial classification, which

is partly conventional, partly physiological, and partly

historical.

2. The view that makes mechanics the basis of the

remaining branches of physics, and explains all physical

phenomena by mechanical ideas, is in our judgment a

prejudice. Knowledge which is historically first, is

not necessarily the foundation of all that is subsequently
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The me- gained. As more and more facts are discovered and

aspects of classified, entirely new ideas of general scope can be
nature not ...

1
. .

necessarily formed. We have no means oi knowing, as yet, which

mental of the physical phenomena go deepest, whether the
aspects. •

.

mechanical phenomena are perhaps not the most super-

ficial of all, or whether all do not go equally deep. Even

in mechanics we no longer regard the oldest law, the

law of the lever, as the foundation of all the ether

principles.

Artificiality The mechanical theory of nature, is, undoubtedly,
of the me- ... , . ........

i j 11
chanicai m an historical view, both intelligible and pardonable ;

conception . r 1 1

of the and it may also, for a time, have been oi much value.
world. . , . . . r . .

But, upon the whole, it is an artificial conception.

Faithful adherence to the method that led the greatest

investigators of nature, Galileo, Newton, Sadi Carnot,

Faraday, and J. R. Mayer, to their great results, re-

stricts physics to the expression of actual facts, and

forbids the construction of hypotheses behind the facts,

where nothing tangible and verifiable is found. If this

is done, only the simple connection of the motions of

masses, of changes of temperature, of changes in the

values of the potential function, of chemical changes,

and so forth is to be ascertained, and nothing is to be

imagined along with these elements except the physical

attributes or characteristics directly or indirectly given

by observation.

This idea was elsewhere * developed by the author

with respect to the phenomena of heat, and indicated,

in the same place, with respect to electricity. All hy-

potheses of fluids or media are eliminated from the

theory of electricity as entirely superfluous, when we

reflect that electrical conditions are all given by the

* Macli, Die Geschichte und die Wurzel des Satzes von der Erhaltung der

Arbeit.
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values of the potential function V and the dielectric Science

constants. If we assume the differences of the values based on

of V\.o be measured (on the electrometer) by the forces, on hypoth-

and regard Fand not the quantity of electricity Q as

the primary notion, or measurable physical attribute,

we shall have, for any simple insulator, for our quan-

tity of electricity

(where x, y, z denote the coordinates and dv the ele-

ment of volume,) and for our potential*

8rt J \ dx* dy 1 dz 2
J

Here Q and ^appear as derived notions, in which no

conception of fluid or medium is contained. If we
work over in a similar manner the entire domain of

physics, we shall restrict ourselves wholly to the quan-

titative conceptual expression of actual facts. All su-

perfluous and futile notions are eliminated, and the

imaginary problems to which they have given rise fore-

stalled. (See Appendix XXVIII, p. 5S3.)

The removal of notions whose foundations are his-

torical, conventional, or accidental, can best be fur-

thered by a comparison of the conceptions obtaining

in the different departments, and by finding for the

conceptions of every department the corresponding

conceptions of others. We discover, thus, that tem-

peratures and potential functions correspond to the

velocities of mass-motions. A single velocity-value, a

single temperature-value, or a single value of potential

function, never changes alone. But whilst in the case

of velocities and potential functions, so far as we yet

* Using the terminology of Clausius.
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Desirabil-
ity of a
compara-
tive phys-

ircum-

know, only differences come into consideration, the

significance of temperature is not only contained in its

difference with respect to other temperatures. Thermal

capacities correspond to masses, the potential of an

electric charge to quantity of heat, quantity of elec-

tricity to entropy, and so on. The pursuit of such re-

semblances and differences lays the foundation of a

comparative physics, which shall ultimately render pos-

sible the concise expression of extensive groups of facts,

without arbitrary additions. We shall then possess a

homogeneous physics, unmingled with artificial atomic

theories.

It will also be perceived, that a real economy of

scientific thought cannot be attained by mechanical

hypotheses. Even if an hypothesis were fully com-

petent to reproduce a given department of natural phe-

nomena, say, the phenomena of heat, we should, by

accepting it, only substitute for the actual relations be-

tween the mechanical and thermal processes, the hy-

pothesis. The real fundamental facts are replaced by

an equally large number of hypotheses, which is cer-

tainly no gain. Once an hypothesis has facilitated,

as best it can, our view of new facts, by the substitu-

tion of more familiar ideas, its powers are exhausted.

We err when we expect more enlightenment from an

hypothesis than from the facts themselves.

3. The development of the mechanical view was

favored by many circumstances. In the first place, a

connection of all natural events with mechanical pro-

stances
which fa-

vored the
develop-
ment of the cesses

-

s unm istakable, and it is natural, therefore, that
mecnanical
view. we shcmid be led to explain less known phenomena by

better known mechanical events. Then again, it was

first in the department of mechanics that laws of gen-

eral and extensive scope were discovered. A law of
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this kind is the principle of vis viva 1Z{U
X
— U ) =

i2\m{v\ — 7'1), which states that the increase of the

vis viva of a system in its passage from one position to

another is equal to the increment of the force-function,

or work, which is expressed as a function of the final

and initial positions. If we fix our attention on the

work a system can perform and call it with Helmholtz

the Spannkraft, S* then the work actually performed,

U, will appear as a diminution of the Spannkraft, K,

initially present; accordingly, S=K— U, and the

principle of vis viva takes the form

2 S -\- \2m v 2 — const,

that is to say, every diminution of the Spannkraft, is The Con-
J ' J J J servationof

compensated for by an increase of the vis viva. In this Energy.

form the principle is also called the law of the Conser-

vation of Energy, in that the sum of the Spannkraft (the

potential energy) and the vis viva (the kinetic energy)

remains constant in the system. But since, in nature,

it is possible that not only vis viva should appear as the

consequence of work performed, but also quantities of

heat, or the potential of an electric charge, and so forth,

scientists saw in this law the expression of a mechanical

action as the basis of all natural actions. However,

nothing is contained in the expression but the fact of

an invariable quantitative connection between mechani-

cal and other kinds of phenomena.

4. It would be a mistake to suppose that a wide

and extensive view of things was first introduced into

physical science by mechanics. On the contrary, this

* Helmholtz used this term in 1847; but it is not found in his subsequent

papers; and in 1882 [Wissenschaftliche Abhandlungen, II, 965) he expressly

discards it in favor of the English "potential energy," He even (p. 968) pre-

fers Clausius's word Ergal to Spannkraft, which is quite out of agreement

with modern terminology.— Trans.
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Compre- insight was possessed at all times by the foremost
hensive- . .

ness of inquirers and even entered into the construction ot
view the

. i
• 1 r

condition, mechanics itself, and was, accordingly, not first created

suit, of me- by the latter. Galileo and Huygens constantly alter-
chanics.

. ........
nated the consideration of particular details with the

consideration of universal aspects, and reached their

results only by a persistent effort after a simple and

consistent view. The fact that the velocities of indi-

vidual bodies and systems are dependent on the spaces

descended through, was perceived by Galileo and

Huygens only by a very detailed investigation of the

motion of descent in particular cases, combined with

the consideration of the circumstance that bodies gen-

erally, of their own accord, only sink. Huygens

especially speaks, on the occasion of this inquiry, of

the impossibility of a mechanical perpetual motion
;

he possessed, therefore, the modern point of view. He
felt the incompatibility of the idea of a perpetual motion

with the notions of the natural mechanical processes

with which he was familiar.

Exempiifi- Take the fictions of Stevinus—say, that of the end-

this°inste- less chain on the prism. Here, too, a deep, broad

searches?" insight is displayed. We have here a mind, disciplined

by a multitude of experiences, brought to bear on an

individual case. The moving endless chain is to Ste-

vinus a motion of descent that is not a descent, a mo-

tion without a purpose, an intentional act that does

not answer to the intention, an endeavor for a change

which does not produce the change. If motion, gener-

ally, is the result of descent, then in the particular case

descent is the result of motion. It is a sense of the

mutual interdependence of v and // in the equation

v = \/2gh that is here displayed, though of course in

not so definite a form. A contradiction exists in this
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fiction for Stevinus's exquisite investigative sense that

would escape less profound thinkers.

This same breadth of view, which alternates the ^.m^the

individual with the universal, is also displayed, only in °* C* 1™'

this instance not restricted to mechanics, in the per- Mayer.

formances of Sadi Carnot. When Carnot finds that

the quantity of heat Q which, for a given amount of

work Z, has flowed from a higher temperature /to a

lower temperature /', can only depend on the tempera-

tures and not on the material constitution of the bodies,

he reasons in exact conformity with the method of

Galileo. Similarly does J.
R. Mayer proceed in the

enunciation of the principle of the equivalence of heat

and work. In this achievement the mechanical view

was quite remote from Mayer's mind ; nor had he need

of it. They who require the crutch of the mechanical

philosophy to understand the doctrine of the equiva-

lence of heat and work, have only half comprehended

the progress which it signalises. Yet, high as we may

place Mayer's original achievement, it is not on that

account necessary to depreciate the merits of the pro-

fessional physicists Joule, Helmholtz, Clausius, and

Thomson, who have done very much, perhaps all, to-

wards the detailed establishment and perfection of the

new view. The assumption of a plagiarism of Mayer's

ideas is in our opinion gratuitous. They who advance

it, are under the obligation to prove it. The repeated

appearance of the same idea is not new in history. We
shall not take up here the discussion of purely personal

questions, which thirty years from now will no longer

interest students. But it is unfair, from a pretense of

justice, to insult men, who if they had accomplished

but a third of their actual services, would have lived

highly honored and unmolested lives. (See p. 584.)
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depend-
61" 5 '

We shal
* nOW attemP t to show that the broad

factlofna
e
-

V *eW exPressed in tlle principle of the conservation
of energy, is not peculiar to mechanics, but is a condi-
tion of logical and sound scientific thought generally.

The business of physical science is the reconstruction
of facts in thought, or the abstract quantitative expres-
sion of facts. The rules which we form for these recon-
structions are the laws of nature. In the conviction that

such rules are possible lies the law of causality. The
law of causality simply asserts that the phenomena of

nature are dependent on one another. The special em-
phasis put on space and time in the expression of the

law of causality is unnecessary, since the relations of

space and time themselves implicitly express that phe-

nomena are dependent on one another.

The laws of nature are equations between the meas-
urable elements a/3yd . . . . gd of phenomena. As na-

ture is variable, the number of these equations is al-

ways less than the number of the elements.

If we know all the values of a/3yd . . ., by which,

for example, the values of Xjuv . . . are given, we may
call the group afiyd . . . the cause and the group
\jav . . . the effect. In this sense we may say that the

effect is uniquely determined by the cause. The prin-

ciple of sufficient reason, in the form, for instance, in

which Archimedes employed it in the development of

the laws of the lever, consequently asserts nothing

more than that the effect cannot by any given set of

circumstances be at once determined and undetermined.

If two circumstances a and A are connected, then,

supposing all others are constant, a change of A will

be accompanied by a change of a, and as a general

rule a change of a by a change of A, The constant

observance of this mutual interdependence is met with
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in Stevinus, Galileo, Huyerens, and other great inquir- Sense of
' ' J ° °

this mter-

ers. The idea is also at the basis of the discovery of depend-
ence at the

counter- phenomena. Thus, a change in the volume of basis of ail
1 ° great dis-

coveries

forms of ex-
pression O:

this truth.

a gas due to a change of temperature is supplemented

by the counter-phenomenon of a change of tempera-

ture on an alteration of volume ; Seebeck's phenome-

non by Peltier's effect, and so forth.

Care must, of course, be exercised, in

such inversions, respecting the form

of the dependence. Figure 235 will

render clear how a perceptible altera-

tion of a may always be produced by

an alteration of X, but a change of X

not necessarily by a change of a. The relations be-

tween electromagnetic and induction phenomena, dis-

covered by Faraday, are a good instance of this truth.

If a set of circumstances a By 6 . . ., by which a y
ario» s

.

' '
- forms or

second set Xuv . . . is determined, be made to pass i;r
.

ession ot
1 7 * this

from its initial values to the terminal values a'/i'y'

d'. . ., then Xjuv . . . also wT

ill pass into Xfi'v'. . .

If the first set be brought back to its initial state, also

the second set will be brought back to its initial state.

This is the meaning of the "equivalence of cause and

effect, " which Mayer again and again emphasizes.

If the first group suffer only periodical changes, the

second group also can suffer only periodical changes,

not continuous permanent ones. The fertile methods

of thought of Galileo, Huygens, S. Carnot, Mayer,

and their peers, are all reducible to the simple but sig-

nificant perception, that purely periodical alterations of

one set of circumstances can only constitute the source of

similarly periodical alterations of a second set of circum-

stances, not ofcontinuous andpermanent alterations. Such

maxims, as "the effect is equivalent to the cause,"
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"work cannot be created out of nothing," "a per-

petual motion is impossible," are particular, less defi-

nite, and less evident forms of this perception, which

in itself is not especially concerned with mechanics, but

is a constituent of scientific thought generally. With

the perception of this truth, any metaphysical mystic-

ism that may still adhere to the principle of the con-

servation of energy* is dissipated. (See p. 585.)

Purpose of
n

All ideas of conservation, like the notion of sub-

stance, have a solid foundation in the economy of

thought. A mere unrelated change, without fixed point

of support, or reference, is not comprehensible, not

mentally reconstructible. We always inquire, accord-

ingly, what idea can be retained amid all variations as

permanent, what law prevails, what equation remains

fulfilled, what quantitative values remain constant?

When we say the refractive index remains constant in

all cases of refraction, o- remains =9-810;;/ in all cases

of the motion of heavy bodies, the energy remains con-

stant in every isolated system, all our assertions have

one and the same economical function, namely that of

facilitating our mental reconstruction of facts.

n.

THE RELATIONS OF MECHANICS TO PHYSIOLOGY.

t All science has its origin in the needs of life.

Conditions x
*

,

of the true u er minutely it may be subdivided by particular
develop- aj-ww^ j j

ment of vocations or by the restricted tempers and capacities oi
science. • • r 1

1

^\

those who foster it, each branch can attain its lull and

best development only by a living connection with the

whole. Through such a union alone can it approach

* When we reflect that the principles of science are all abstractions that

presuppose repetitions of similar cases, the absurd applications of the law of

the conservation of forces to the universe as a whole fall to the ground.
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its true maturity, and be insured against lop-sided and

monstrous growths.

The division of labor, the restriction of individual Confusion

,. . , .
,

. .of the

inquirers to limited provinces, the investigation 01 means and
aims of

those provinces as a life-work, are the fundamental science,

conditions of a fruitful development of science. Only

by such specialisation and restriction of work can the

economical instruments of thought requisite for the

mastery of a special field be perfected. But just here

lies a danger—the danger of our overestimating the in-

struments, with which we are so constantly employed,

or even of regarding them as the objective point of

science.

2. Now, such a state of affairs has, in our opinion, Physics

actually been produced by the disproportionate formal maT/the

development of physics. The majority of natural in- physiology,

quirers ascribe to the intellectual implements of physics,

to the concepts mass, force, atom, and so forth, whose

sole office is to revive economically arranged expe-

riences, a reality beyond and independent of thought.

Not only so, but it has even been held that these forces

and masses are the real objects of inquiry, and, if once

they were fully explored, all the rest would follow from

the equilibrium and motion of these masses. A person

who knew the world only through the theatre, if brought

behind the scenes and permitted to view the mechan-

ism of the stage's action, might possibly believe that

the real world also was in need of a machine-room, and

that if this were once thoroughly explored, we should

know all. Similarly, we, too, should beware lest the

intellectual machinery, employed in the representation

of the world on the stage of thought, be regarded as the

basis of the real world.

3. A philosophy is involved in any correct view of
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The at- the relations of special knowledge to the great body of

pTa'mfe^" knowledge at large,—a philosophy that must be de-

Sons, manded of every special investigator. The lack of it

is asserted in the formulation of imaginary problems,

in the very enunciation of which, whether regarded as

soluble or insoluble, flagrant absurdity is involved.

Such an overestimation of physics, in contrast to physi-

ology, such a mistaken conception of the true relations

of the two sciences, is displayed in the inquiry whether

it is possible to explain feelings by the motions of

atoms?

Explication Let us seek the conditions that could have impelled

anomaly, the mind to formulate so curious a question. We find

in the first place that greater confidence is placed in our

experiences concerning relations of time and space
;

that we attribute to them a more objective, a more real

character than to our experiences of colors, sounds,

temperatures, and so forth. Yet, if we investigate the

matter accurately, we must surely admit that our sen-

sations of time and space are just as much sensations

as are our sensations of colors, sounds, and odors, only

that in our knowledge of the former we are surer and

clearer than in that of the latter. Space and time are

well-ordered systems of sets of sensations. The quan-

tities stated in mechanical equations are simply ordinal

symbols, representing those members of these sets

that are to be mentally isolated and emphasised. The

equations express the form of interdependence of these

ordinal symbols.

A body is a relatively constant sum of touch and

sight sensations associated with the same space and

time sensations. Mechanical principles, like that, for

instance, of the mutually induced accelerations of two

masses, give, either directly or indirectly, only some
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combination of touch, sight, light, and time sensations.

They possess intelligible meaning only by virtue of

the sensations they involve, the contents of which may
of course be very complicated.

It would be equivalent, accordingly, to explaining Mode of

. -1 1 • Tii i-
avoiding

the more simple and immediate by the more coniph- sucher-

cated and remote, 11 we were to attempt to derive sen-

sations from the motions of masses, wholly aside from

the consideration that the notions of mechanics are

economical implements or expedients perfected to

represent mechanical and not physiological or psycho-

logical facts. If the 7neans and aims of research were

properly distinguished, and our expositions were re-

stricted to the presentation of actual facts, false prob-

lems of this kind could not arise.

4. All physical knowledge can only mentally repre- The princi-

sent and anticipate compounds of those elements we changes not

call sensations. It is concerned with the connection of tion but

these elements. Such an element, say the heat of a body aspect
0"

A, is connected, not only w7ith other elements, say with

such whose aggregate makes up the flame B, but also

with the aggregate of certain elements of our body, say

with the aggregate of the elements of a nerve JN. As
simple object and element N"\s not essentially, but only

conventionally, different from A and B. The connection

of A and B is a problem of physics, that of A and N a

problem of physiology. Neither is alone existent; both

exist at once. Only provisionally can we neglect

either. Processes, thus, that in appearance are purely

mechanical, are, in addition to their evident mechani-

cal features, always physiological, and, consequently,

also electrical, chemical, and so forth. The science of

mechanics does not comprise the foundations, no, nor

even a part of the world, but only an aspect of it.
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(See page 3.)

Recent research has contributed greatly to our

knowledge of the scientific literature of antiquity, and

our opinion of the achievements of the ancient world

in science has been correspondingly increased. Schia-

parelli has done much to place the work of the

Greeks in astronomy in its right light, and Govi has

disclosed many precious treasures in his edition of

the Optics of Ptolemy. The view that the Greeks

were especially neglectful of experiment can no longer

be maintained unqualifiedly. The most ancient ex-

periments are doubtless those of the Pythagoreans,

who employed a monochord with moveable bridge for

determining the lengths of strings emitting harmonic

notes. Anaxagoras's demonstration of the corporeal-

ity of the air by means of closed inflated tubes, and

that of Empedocles by means of a vessel having its

orifice inverted in water (Aristotle, Physics') are both

primitive experiments. Ptolemy instituted systematic

experiments on the refraction of light, while his ob-

servations in physiological optics are still full of in-

terest to-day. Aristotle {Meteorology) describes phe-

nomena that go to explain the rainbow. The absurd

stories which tend to arouse our mistrust, like that of

Pythagoras and the anvil which emitted harmonic
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notes when struck by hammers of different weights,

probably sprang from the fanciful brains of ignorant

reporters. Pliny abounds in such vagaries. But they

are not,. as a matter of fact, a whit more incorrect or

nonsensical than the stories of Newton's falling apple

and of Watts's tea-kettle. The situation is, more-

over, rendered quite intelligible when we consider the

difficulties and the expense attending the production

of ancient books and their consequent limited circula-

tion. The conditions here involved are concisely dis-

cussed by J. Mueller in his paper, " Ueber das Ex-

periment in den physikalischen Studien der Grie-

chen," Naturwiss. Verein zu Innsbruck, XXIII., 1896-

1897.

(See page 8.)

Researches in mechanics were not begun by the

Greeks until a late date, and in no wise keep pace

with the rapid advancement of the race in the domain

of mathematics, and notably in geometry. Reports

of mechanical inventions, so far as they relate to the

early inquirers, are extremely meager. Archytas, a

distinguished citizen of Tarentum {circa 400 B. C),

famed as a geometer and for his employment with the

problem of the duplication of the cube, devised me-

chanical instruments for the description of various

curves. As an astronomer he taught that the earth

was spherical and that it rotated upon its axis once a

day. As a mechanician he founded the theory of pul-

leys. He is also said to have applied geometry to

mechanics in a treatise on this latter science, but all

information as to details is lacking. We are told,

though, by Aulus Gellius (X. 12) that Archytas con
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structed an automaton consisting of a flying dove of

wood and presumably operated by compressed air,

which created a great sensation. It is, in fact, char-

acteristic of the early history of mechanics that atten-

tion should have been first directed to its practical

advantages and to the construction of automata de-

signed to excite wonder in ignorant people.

Even in the days of Ctesibius (285-247 B. C.) and

Hero (first century A. D.) the situation had not ma-
terially changed. So, too, during the decadence of

civilisation in the Middle Ages, the same tendency as-

serts itself. The artificial automata and clocks of this

period, the construction of which popular fancy as-

cribed to the machinations of the Devil, are well

known. It was hoped, by imitating life outwardly, to

apprehend it from its inward side also. In intimate

connexion with the resultant misconception of life

stands also the singular belief in the possibility of a

perpetual motion. Only gradually and slowly, and in

indistinct forms, did the genuine problems of mechan-

ics loom up before the minds of inquirers. Aristotle's

tract, Mechanical Problems (German trans, by Poselger,

Hannover, 1881) is characteristic in this regard. Aris-

totle is quite adept in detecting and in formulating

problems ; he perceived the principle of the parallel-

ogram of motions, and was on the verge of discover-

ing centrifugal force; but in the actual solution of

problems he was infelicitous. The entire tract par-

takes more of the character of a dialectic than of a

scientific treatise, and rests content with enunciating

the "apories," or contradictions, involved in the prob-

lems. But the tract upon the whole very well illus-

trates the intellectual situation that is characteristic

of the beginnings of scientific investigation.
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"If a thing take place whereof the cause be not

apparent, even though it be in accordance with na-

ture, it appears wonderful. . . . Such are the instances

in which small things overcome great things, small

weights heavy weights, and incidentally all the prob-

lems that go by the name of ' mechanical.' ... To

the apories (contradictions) of this character belong

those that appertain to the lever. For it appears con-

trary to reason that a large weight should be set in

motion by a small force, particularly when that weight

is in addition combined with a larger weight. A weight

that cannot be moved without the aid of a lever can be

moved easily with that of a lever added. The pri-

mordial cause of all this is inherent in the nature of

the circle,—which is as one should naturally expect:

for it is not contrary to reason that something won-

derful should proceed out of something else that is

wonderful. The combination of contradictory prop-

erties, however, into a single unitary product is the

most wonderful of all things. Now, the circle is ac-

tually composed of just such contradictory properties.

For it is generated by a thing that is in motion and

by a thing that is stationary at a fixed point."

In a subsequent passage of the same treatise there

is a very dim presentiment of the principle of virtual

velocities.

Considerations of the kind here adduced give evi-

dence of a capacity for detecting and enunciating prob-

lems, but are far from conducting the investigator to

their solution.
in.

(See page 14.)

It may be remarked in further substantiation of

the criticisms advanced at pages 13-14, that it is very
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obvious that if the arrangement is absolutely sym-

metrical in every respect, equilibrium obtains on the

assumption of any form of dependence whatever of

the disturbing factor on Z, or, generally, on the as-

sumption P.f(L)\ and that consequently the particular

form of dependence PL cannot possibly be inferred

from the equilibrium. The fallacy of the deduction

must accordingly be sought in the transformation to

which the arrangement is subjected. Archimedes

makes the action of two equal weights to be the same

under all circumstances as that of the combined

weights acting at the middle point of their line of

junction. But, seeing that he both knows and as-

sumes that distance from the fulcrum is determina-

tive, this procedure is by the premises impermissible,

if the two weights are situated at unequal distances

from the fulcrum. If a weight situated at a distance

from the fulcrum is divided into two equal parts, and

these parts are moved in contrary directions symmet-

rically to their original point of support; one of the

equal weights will be carried as near to the fulcrum

as the other weight is carried from it. If it is assumed

that the action remains constant during such proce-

dure, then the particular form of dependence of the

moment on L is implicitly determined by what has

been done, inasmuch as the result is only possible

provided the form be PL, or be proportional to L. But
in such an event all further deduction is superfluous.

The entire deduction contains the proposition to be

demonstrated, by assumption if not explicitly.
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IV.

(See page 20.)

Experiments are never absolutely exact, but they

at least may lead the inquiring mind to conjecture that

the key which will clear up the connexion of all the

facts is contained in the exact metrical expression

PL. On no other hypothesis are the deductions of

Archimedes, Galileo, and the rest intelligible. The

required transformations, extensions, and compres-

sions of the prisms may now be carried out with per-

fect certainty.

A knife edge may be introduced at any point un-

der a prism suspended from its center without dis-

turbing the equilib-

/O rium (see Fig. 236),

I
and several such ar-

I J
rangements may be

rigidly combined to-
x

/ss
] gether so as to form

Fig> 2s6#
apparently new cases

of equilibrium. The

conversion and disintegration of the case of equi-

librium into several other cases (Galileo) is possible

only by taking into account the value of PL. I can-

not agree with O. Holder who upholds the correct-

ness of the Archimedean deductions against my criti-

cisms in his essay Denke?i und Anschauung in dcr Gro-

metrie, although I am greatly pleased with the extent

of our agreement as to the nature of the exact sci

ences and their foundations. It would seem as if

Archimedes (De cequiponderantihus) regarded it as a

general experience that two equal weights may under

all circumstances be replaced by one equal to their
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combined weight at the center (Theorem 5, Corrol-

ary 2). In such an event, his long deduction (Theo-

rem 6) would be necessary, for the reason sought fol-

lows immediately (see pp. 14, 513). Archimedes's

mode of expression is not in favor of this view.

Nevertheless, a theorem of this kind cannot be re-

garded as a priori evident; and the views advanced

on pp. 14, 513 appear to me to be still uncontro-

verted.

v.

(See page 29.)

Stevinus's procedure may be looked at from still

another point of view. If it is a fact, for our mechan-

ical instinct, that a heavy endless chain will not ro-

tate, then the individual simple cases of equilibrium

on an inclined plane which Stevinus devised and

which are readily controlled quantitatively, may be

regarded as so many special experiences. For it is

not essential that the experiments should have been

actually carried out, if the result is beyond question

of doubt. As a matter of fact, Stevinus experiments

in thought. Stevinus's result could actually have

been deduced from the corresponding physical exper-

iments, with friction reduced to a minimum. In an

analogous manner, Archimedes's considerations with

respect to the lever might be conceived after the

fashion of Galileo's procedure. If the various mental

experiments had been executed physically, the linear

dependence of the static moment on the distance of

the weight from the axis could be deduced with per-

fect rigor. We shall have still many instances to ad-

duce, among the foremost inquirers in the domain of

mechanics, of this tentative adaptation of special
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quantitative conceptions to general instinctive im-

pressions. The same phenomena are presented in

other domains also. I may be permitted to refer in

this connexion to the expositions which I have given

in my Principles of Heat, page 151. It may be said

that the most significant and most important advances

in science have been made in this manner. The habit

which great inquirers have of bringing their single

conceptions into agreement with the general concep-

tion or ideal of an entire province of phenomena, their

constant consideration of the whole in their treatment

of parts, may be characterised as a genuinely philo-

sophical procedure. A truly philosophical treatment

of any special science will always consist in bringing

the results into relationship and harmony with the

established knowledge of the whole. The fanciful

extravagances of philosophy, as well as infelicitous

and abortive special theories, will be eliminated in

this manner.

It will be worth while to review again the points

of agreement and difference in the mental procedures

of Stevinus and Archimedes. Stevinus reached the

very general view that a mobile, heavy, endless chain

of any form stays at rest. He is able to deduce from

this general view, without difficulty, special cases,

which are quantitatively easily controlled. The case

from which Archimedes starts, on the other hand, is

the most special conceivable. He cannot possibly

deduce from his special case in an unassailable man-

ner the behavior which may be expected under more

general conditions. If he apparently succeeds in so

doing, the reason is that he already knows the result

which he is seeking, whilst Stevinus, although he too

doubtless knows, approximately at least, what he is
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in search of, nevertheless could have found it directly

by his manner of procedure, even if he had not known

it. When the static relationship is rediscovered in

such a manner it has a higher value than the result of

a metrical experiment would have, which always de-

viates somewhat from the theoretical truth. The de-

viation increases with the disturbing circumstances,

as with friction, and decreases with the diminution of

these difficulties. The exact static relationship is

reached by idealisation and disregard of these dis-

turbing elements. It appears in the Archimedean and

Stevinian procedures as an hypothesis without which

the individual facts of experience would at once be-

come involved in logical contradictions. Not until

we have possessed this hypothesis can we by operat-

ing with the exact concepts reconstruct the facts and

acquire a scientific and logical mastery of them. The

lever and the inclined plane are self-created ideal ob-

jects of mechanics. These objects alone completely

satisfy the logical demands which we make of them
;

the physical lever satisfies these conditions only in

measure in which it approaches the ideal lever. The

natural inquirer strives to adapt his ideals to reality.

VI.

(See page no )

Our modern notions with regard to the nature of

air are a direct continuation of the ancient ideas. An-

axagoras proves the corporeality of air from its resist-

ance to compression in closed bags of skin, and from

the gathering up of the expelled air (in the form of

bubbles?) by water (Aristotle, Physics, IV., 9). Ac-

cording to Empedocles, the air prevents the water
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from penetrating into the interior of a vessel immersed
with its aperture downwards (Gomperz, Griechische

Denker, I., p. 191). Philo of Byzantium employs for

the same purpose an inverted vessel having in its bot-

tom an orifice closed with wax. The water will not

penetrate into the submerged vessel until the wax
cork is removed, wherupon the air escapes in bubbles.

An entire series of experiments of this kind is per-

formed, in almost the precise form customary in the

schools to-day {Philonis lib. de ingeniis spiritualibus, in

V. Rose's Anecdota grceca et latino). Hero describes

in his Pneumatics many of the experiments of his

predecessors, with additions of his own ; in theory he

is an adherent of Strato, who occupied an intermedi-

ate position between Aristotle and Democritus. An
absolute and continuous vacuum, he says, can be

produced only artificially, although numberless tiny

vacua exist between the particles of bodies, including

air, just as air does among grains of sand. This is

proved, in quite the same ingenuous fashion as in our

present elementary books, from the possibility of rare-

fying and compressing bodies, including air (inrush-

ing and outrushing of the air in Hero's ball). An ar-

gument of Hero's for the existence of vacua (pores)

between corporeal particles rests on the fact that rays

of light penetrate water. The result of artificially in-

creasing a vacuum, according to Hero and his prede-

cessors, is always" the attraction and solicitation of

adjacent bodies. A light vessel with a narrow aper-

ture remains hanging to the lips after the air has been

exhausted. The orifice may be closed with the finger

and the vessel submerged in water. "If the finger

be released, the water will rise in the vacuum created,

although the movement of the liquid upward is not
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according to nature. The phenomenon of the cup-

ping-glass is the same ; these glasses, when placed

on the body, not only do not fall off, although they

are heavy enough, but they also draw out adjacent

particles through the pores of the body." The bent

siphon is also treated at length. "The filling of the

siphon on exhaustion of the air is accomplished by

the liquid's closely following the exhausted air, for

the reason that a continuous vacuum is inconceiv-

able." If the two arms of the siphon are of the same

length, nothing flows out. "The water is held in

equilibrium as in a balance. " Hero accordingly con-

ceives of the flow of water as analogous to the move-

ment of a chain hanging with unequal lengths over a

pulley. The union of the two columns, which for us

is preserved by the pressure of the atmosphere, is

cared for in his case by the "inconceivability of a

continuous vacuum." It is shown at length, not that

the smaller mass of water is attracted and drawn

along by the greater mass, and that conformably to

this principle water cannot flow upwards, but rather

that the phenomenon is in harmony with the principle

of communicating vessels. The many pretty and in-

genious tricks which Hero describes in his Pneumatics

and in his Automata, and which were designed partly

to entertain and partly to excite wonder, offer a

charming picture of the material civilisation of the day

rather than excite our scientific interest. The auto-

matic sounding of trumpets and the opening of tem-

ple doors, with the thunder simultaneously produced,

are not matters which interest science properly so

called. Yet Hero's writings and notions contributed

much toward the diffusion of physical knowledge

(compare W. Schmidt, Htro's Werke, Leipsic, 1899,
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and Diels, System des Strato, Sitzungsberichte der Ber-

liner Akademie, 1893).

(See page 129.)

It has often been asserted that Galileo had prede-

cessors of great prominence in his method of think-

ing, and while it is far from our purpose to gainsay

this, we have still to emphasise the fact that Galileo

overtowered them all. The greatest predecessor of

Galileo, to whom we have already referred in another

place, was Leonardo da Vinci, 1452-1519; now, it

was impossible for Leonardo's achievements to have

influenced the development of science at the time, for

the reason that they were not made known in their

entirety until the publication of Venturi in 1797. Leo-

nardo knew the ratio of the times of descent down

the slope and the height of an inclined plane. Fre-

quently also a knowledge of the law of inertia is at-

tributed to him. Indeed, some sort of instinctive

knowledge of the persistence of motion once begun

will not be gainsaid to any normal man. But Leo-

nardo seems to have gone much farther than this.

He knows that from a column of checkers one of the

pieces may be knocked out without disturbing the

others ; he knows that a body in motion will move

longer according as the resistance is less, but he be-

lieves that the body will move a distance proportional

to the impulse, and nowhere expressly speaks of the

persistence of the motion when the resistance is alto-

gether removed. (Compare Wohlwill, Bibliotheca Ma-

thematica, Stockholm, 1888, p. 19). Benedetti (1530-

1590) knows that falling bodies are accelerated, and

explains the acceleration as due to the summation
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of the impulses of gravity {Divers, speculat. math, et

physic, liber, Taurini, 1585). He ascribes the progres-

sive motion of a projectile, not as the Peripatetics

did, to the agency of the medium, but to the virtus

impressa, though without attaining perfect clearness

with regard to these problems. Galileo seems actu-

ally to have proceeded from Benedetti's point of view,

for his youthful productions are allied to those of

Benedetti. Galileo also assumes a virtus impressa,

which he conceives to decrease in efficiency, and ac-

cording to Wohlwill it appears that it was not until

1604 that he came into full possession of the laws of

falling bodies.

G. Vailati, who has devoted much attention to Be-

nedetti's investigations (AM delta R. Acad, di Torino,

Vol. XXXIII., 1898), finds the chief merit of Bene-

detti to be that he subjected the Aristotelian views to

mathematical and critical scrutiny and correction, and

endeavored to lay bare their inherent contradictions,

thus preparing the way for further progress. He

knows that the assumption of the Aristotelians, that

the velocity of falling bodies is inversely proportional

to the density of the surrounding medium, is un-

tenable and possible only in special cases. Let the

velocity of descent be proportional to /— q, where/

is the weight of the body and q the upward impulsion

due to the medium. If only half the velocity of de-

scent is set up in a medium of double the density,

the equation/— q= 2(p— 2q) must exist,—a relation

which is possible only in case p= 3q. Light bodies

per se do not exist for Benedetti; he ascribes weight

and upward impulsion even to air. Different-sized

bodies of the same material fall, in his opinion, with

the same velocity. Benedetti reaches this result by
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conceiving equal bodies falling alongside each other

first disconnected and then connected, where the con-

nexion cannot alter the motion. In this he approaches

to the conception of Galileo, with the exception that

the latter takes a profounder view of the matter.

Nevertheless, Benedetti also falls into many errors;

he believes, for example, that the velocity of descent

of bodies of the same size and of the same shape is

proportional to their weight, that is, to their density.

His reflexions on catapults, no less than his views on

the oscillation of a body about the center of the earth

in a canal bored through the earth, are interesting,

and contain little to be criticised. Bodies projected

horizontally appear to approach the earth more slowly.

Benedetti is accordingly of the opinion that the force

of gravity is diminished also in the case of a top rotat-

ing with its axis in a vertical position. He thus does

not solve the riddle fully, but prepares the way for

the solution.

VIII.

(See page 134.)

If we are to understand Galileo's train of thought,

we must bear in mind that he was already in posses-

sion of instinctive experiences prior to his resorting

to experiment.

Freely falling bodies are followed with more diffi-

culty by the eye the longer and the farther they have

fallen ; their impact on the hand receiving them is in

like measure sharper ; the sound of their striking

louder. The velocity accordingly increases with the

time elapsed and the space traversed. But for scien-

tific purposes our mental representations of the facts

of sensual experience must be submitted to conceptual
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formulation. Only thus may they be used for discov-

ering by abstract mathematical rules unknown prop-

erties conceived to be dependent on certain initial

properties having definite and assignable arithmetic

values; or, for completing what has been only partly

given. This formulation is effected by isolating and

emphasising what is deemed of importance, by neg-

lecting what is subsidiary, by abstracting, by idealis-

ing. The experiment determines whether the form

chosen is adequate to the facts. Without some pre-

conceived opinion the experiment is impossible, be-

cause its form is determined by the opinion. For

how and on what could we experiment if we did not

previously have some suspicion of what we were

about? The complemental function which the experi-

ment is to fulfil is determined entirely by our prior

experience. The experiment confirms, modifies, or

overthrows our suspicion. The modern inquirer would

ask in a similar predicament : Of what is v a function?

What function of / is v? Galileo asks, in his ingenu-

ous and primitive way: is v proportional to s, is v

proportional to /? Galileo, thus, gropes his way along

synthetically, but reaches his goal nevertheless. Sys-

tematic, routine methods are the final outcome of re-

search, and do not stand perfectly developed at the

disposal of genius in the first steps it takes. (Com-

pare the article " Ueber Gedankenexperimente,' , Zeit-

schrift filr denphys. und chem. Unterricht, 1897, I.)

IX.

(See page 140.)

In an exhaustive study in the Zeitschrift filr Volker-

psychologie, 1884, Vol. XIV., pp. 365-410, and Vol.
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XV., pp. 70-135, 337-387, entitled "Die Entdeckung

des Beharrungsgesetzes," E. Wohlwill has shown that

the predecessors and contemporaries of Galileo, nay,

even Galileo himself, only very gradually abandoned

the Aristotelian conceptions for the acceptance of the

law of inertia. Even in Galileo's mind uniform cir-

cular motion and uniform horizontal motion occupy

distinct places. WohlwilPs researches are very ac-

ceptable and show that Galileo had not attained per-

fect clearness in his own new ideas and was liable to

frequent reversion to the old views, as might have

been expected.

Indeed, from my own exposition the reader will

have inferred that the law of inertia did not possess

in Galileo's mind the degree of clearness and univer-

sality that it subsequently acquired. (See pp. 140 and

143.) With regard to my exposition at pages 140-

141, however, I still believe, in spite of the opinions

of Wohlwill and Poske, that I have indicated the

point which both for Galileo and his successors must

have placed in the most favorable light the transition

from the old conception to the new. How much was

wanting to absolute comprehension, may be gathered

from the fact that Baliani was able without difficulty

to infer from Galileo's statement that acquired velo-

city could not be destroyed,—a fact which Wohlwill

himself points out (p. 112). It is not at all surpris-

ing that in treating of the motion of heavy bodies,

Galileo applies his law of inertia almost exclusively

to horizontal movements. Yet he knows that a mus-

ket-ball possessing no weight would continue rectiline-

arly on its path in the direction of the barrel. {Dia-

logues on the two World Systems, German translation,

Leipsic, 1891, p. 184.) His hesitation in enunciating
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in its most general terms a law that at first blush ap-

pears so startling, is not surprising.

x.

(Seepage 155.)

We cannot adequately appreciate the extent of

Galileo's achievement in the analysis of the motion of

projectiles until we examine his predecessors' endeav-

ors in this field. Santbach (1561) is of opinion, that a

cannon-ball speeds onward in a straight line until its

velocity is exhausted and then drops to the ground in

a vertical direction. Tartaglia (1537) compounds the

path of a projectile out of a straight line, the arc of a

circle, and lastly the vertical tangent to the arc. He
is perfectly aware, as Rivius later (1582) more dis-

tinctly states, that accurately viewed the path is

curved at all points, since the deflective action of

gravity never ceases ; but he is yet unable to arrive

at a complete analysis. The initial portion of the

path is well calculated to arouse the illusive impres-

sion that the action of gravity has been annulled by

the velocity of the projection,—an illusion to which

even Benedetti fell a victim. (See Appendix, vil, p.

129.) We fail to observe any descent in the initial

part of the curve, and forget to take into account the

shortness of the corresponding time of the descent.

By a similar oversight a jet of water may assume the

appearance of a solid body suspended in the air, if

one is unmindful of the fact that it is made up of a

mass of rapidly alternating minute particles. The
same illusion is met with in the centrifugal pendulum,

in the top, in Aitken's flexible chain rendered rigid

by rapid rotation {Philosophical Magazine, 1878), in

the locomotive which rushes safely across a defective
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bridge, through which it would have crashed if at

rest, but which, owing to the insufficient time of des-

cent and of the period in which it can do work, leaves

the bridge intact. On thorough analysis none of

these phenomena are more surprising than the most

ordinary events. As Vailati remarks, the rapid spread

of firearms in the fourteenth century gave a distinct

impulse to the study of the motion of projectiles, and

indirectly to that of mechanics generally. Essentially

the same conditions occur in the case of the ancient

catapults and in the hurling of missiles by the hand,

but the new and imposing form of the phenomenon

doubtless exercised a great fascination on the curios-

ity of people.

So much for history. And now a word as to the

notion of "composition." Galileo's conception of the

motion of a projectile as a process compounded of

two distinct and independent motions, is suggestive

of an entire group of similar important episfcemologi-

cal processes. We may say that it is as important to

perceive the non dependence of two circumstances A
and B on each other, as it is to perceive the dependence

of two circumstances A and C on each other. For

the first perception alone enables us to pursue the

second relation with composure. Think only of how
serious an obstacle the assumption of non-existing

causal relations constituted to the research of the

Middle Ages. Similar to Galileo's discovery is that

of the parallelogram of forces by Newton, the compo-

sition of the vibrations of strings by Sauveur, the com

position of thermal disturbances by Fourier. Through

this latter inquirer the method of compounding a phe-

nomenon out of mutually independent partial phe-

nomena by means of representing a general integral
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as the sum of particular integrals has penetrated into

every nook and corner of physics. The decomposi-

tion of phenomena into mutually independent parts

has been aptly characterised by P. Volkmann as iso-

lation, and the composition of a phenomenon out of

such parts, superposition. The two processes combined

enable us to comprehend, or reconstruct in thought,

piecemeal, what, as a whole, it would be impossible

for us to grasp.

" Nature with its myriad phenomena assumes a

unified aspect only in the rarest cases; in the major-

ity of instances it exhibits a thoroughly composite

character . . . ; it is accordingly one of the duties of

science to conceive phenomena as made up of sets of

partial phenomena, and at first to study these partial

phenomena in their purity. Not until we know to

what extent each circumstance shares in the phenom-

enon as an entirety do we acquire a command over

the whole. . .
." (Cf. P. Volkmann, Erkenntnisstheo-

retische Grundzilge der Naturwissenschaft, 1896, p. 70.

Cf. also my Principles of Heat, German edition, pp.

123, 151, 452).

XI.

(See page 161.)

The perspicuous deduction of the expression for

centrifugal force based on the principle of Hamilton's

hodograph may also be mentioned. If a body move

uniformly in a circle of radius r (Fig. 237), the velo-

city 7/ at the point A of the path is transformed by

the traction of the string into the velocity v of like

magnitude but different direction at the point B. If

from O as centre (Fig. 238) we lay off as to magni-

tude and direction all the velocities the body succes-
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sively acquires, these lines will represent the sum

of the radii v of the circle. For OM to be trans-

formed into ON, the perpendicular component to it,

MN, must be added. During the period of revolu-

tion T the velocity is uniformly increased in the direc-

tions of the radii r by an amount 2nv. The numeri-

m jv p

Fig. 237. Fig. 238. Fig. 230.

cal measure of the radial acceleration is therefore

<p= -^-
9
and since vT=2rtr, therefore also q>= — •

If to OM=v the very small component w is added

(Fig. 239), the resultant "will strictly be a greater

. lift

velocity V v1 + w2 =v+ ^-, as the approximate ex-

traction of the square root will show. But on contin-

uous deflection ^- vanishes with respect to v ;
hence,

zv

only the direction, but not the magnitude, of the

velocity changes.

(See page 162.)

Even Descartes thought of explaining the centri-

petal impulsion of floating bodies in a vortical me-

dium, after this manner. But Huygens correctly re-
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marked that on this hypothesis we should have to

assume that the lightest bodies received the greatest

centripetal impulsion, and that all heavy bodies would

without exception have to be lighter than the vortical

medium. Huygens observes further that like phe-

nomena are also necessarily presented in the case of

bodies, be they what they may, that do not participate

in the whirling movement, that is to say, such as

might exist without centrifugal force in a vortical

medium affected with centrifugal force. For exam-

ple, a sphere composed of any material whatsoever

but moveable only along a stationary axis, say a wire,

is impelled toward the axis of rotation in a whirling

medium.

In a closed vessel containing water Huygens

placed small particles of sealing wax which are

slightly heavier than water and hence touch the bot-

tom of the vessel. If the vessel be rotated, the par-

ticles of sealing wax will flock toward the outer rim

of the vessel. If the vessel be then suddenly brought

to rest, the water wT
ill continue to rotate while the

particles of sealing wax which touch the bottom and

are therefore more rapidly arrested in their move-

ment, will now be impelled toward the axis of the

vessel. In this process Huygens saw an exact replica

of gravity. An ether whirling in one direction only,

did not appear to fulfil his requirements. Ultimately,

he thought, it would sweep everything with it. He
accordingly assumed ether-particles that sped rapidly

about in all directions, it being his theory that in a

closed space, circular, as contrasted with radial, mo-

tions would of themselves preponderate. This ether

appeared to him adequate to explain gravity. The

detailed exposition of this kinetic theory of gravity is
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found in Huygens's tract On the Cause of Gravitation

(German trans, by Mewes, Berlin, 1893). See also

Lasswitz, Geschichte der Atomistik, 1890, Vol. II., p.

344-

XIII.

(See page 187 )

It has been impossible for us to enter upon the

signal achievements of Huygens in physics proper.

But a few points may be briefly indicated. He is the

creator of the wave-theory of light, which ultimately

overthrew the emission theory of Newton. His at-

tention was drawn, in fact, to precisely those features

of luminous phenomena that had escaped Newton.

With respect to physics he took up with great enthu-

siasm the idea of Descartes that all things were to be

explained mechanically, though without being blind

to its errors, which he acutely and correctly criticised.

His predilection for mechanical explanations rendered

him also an opponent of Newton's action at a distance,

which he wished to replace by pressures and impacts,

that is, by action due to contact. In his endeavor to

do so he lighted upon some peculiar conceptions, like

that of magnetic currents, which at first could not

compete with the influential theory of Newton, but

has recently been reinstated in its full rights in the

unbiassed efforts of Faraday and Maxwell. As a

geometer and mathematician also Huygens is to be

ranked high, and in this connexion reference need be

made only to his theory of games of chance. His

astronomical observations, his achievements in theo-

retical and practical dioptrics advanced these depart-

ments very considerably. As a technicist he is the

inventor of the powder-machine, the idea of which



APPENDIX. 531

has found actualisation in the modern gas-machine.

As a physiologist he surmised the accommodation of

the eye by deformation of the lens. All these things

can scarcely be mentioned here. Our opinion of Huy-

gens grows as his labors are made better known by the

complete edition of his works. A brief and reveren-

tial sketch of his scientific career in all its phases is

given by J.
Bosscha in a pamphlet entitled Christian

Huyghens, Rede am 200. Geddchtnisstage seines Lebens-

endes, German trans, by Engelmann, Leipsic, 1895.

xiv.

(See page 190.)

Rosenberger is correct in his statement {Newton

und seine physikalischen Principien, 1895) that the idea

of universal gravitation did not originate with New-

ton, but that Newton had many highly deserving pred-

ecessors. But it may be safely asserted that it was,

with all of them, a question of conjecture, of a groping

and imperfect grasp of the problem, and that no one

before Newton grappled with the notion so compre-

hensively and energetically; so that above and beyond

the great mathematical problem, which Rosenberger

concedes, there still remains to Newton the credit of

a colossal feat of the imagination.

Among Newton's forerunners may first be men-

tioned Copernicus, who (in 1543) says: "I am at

least of opinion that gravity is nothing more than a

natural tendency implanted in particles by the divine

providence of the Master of the Universe, by virtue of

which, they, collecting together in the shape of a

sphere, do form their own proper unity and integrity.

And it is to be assumed that this propensity is in-

herent also in the sun, the moon, and the other plan-
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ets." Similarly, Kepler (1609), like Gilbert before

him (1600), conceives of gravity as the analogue of

magnetic attraction. By this analogy, Hooke, it seems,

is led to the notion of a diminution of gravity with the

distance ; and in picturing its action as due to a kind

of radiation, he even hits upon the idea of its acting

inversely as the square of the distance. He even

sought to determine the diminution of its effect (1686)

by weighing bodies hung at different heights from the

top of Westminster Abbey (precisely after the more

modern method of Jolly), by means of spring-balances

and pendulum clocks, but of course without results.

The conical pendulum appeared to him admirably

adapted for illustrating the motion of the planets.

Thus Hooke really approached nearest to Newton's

conception, though he never completely reached the

latter's altitude of view.

In two instructive writings {Kepler's Lehre von dcr

Gravitation, Halle, 1896: Die Gravitation bei Galileo

u. Borelli, Berlin, 1897) E. Goldbeck investigates the

early history of the doctrine of gravitation with Kepler

on the one hand and Galileo and Borelli on the other.

Despite his adherence to scholastic, Aristotelian no-

tions, Kepler has sufficient insight to see that there is

a real physical problem presented by the phenomena

of the planetary system; the moon, in his view, is

swept along with the earth in its motion rqund the

sun, and in its turn drags the tidal wave along with

it, just as the earth attracts heavy bodies. Also, for

the planets the source of motion is sought in the sun,

from which immaterial levers extend that rotate with

the sun and carry the distant planets around more

slowly than the near ones. By this view, Kepler was

enabled to guess that the period of rotation of the sun
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was less than eighty-eight days, the period of revolu-

tion of Mercury. At times, the sun is also conceived

as a revolving magnet, over against which are placed

the magnetic planets. In Galileo's conception of the

universe, the formal, mathematical, and esthetical

point of view predominates. He rejects each and

every assumption of attraction, and even scouted the

idea as childish in Kepler. The planetary system had

not yet taken the shape of a genuine physical problem

for him. Yet he assumed with Gilbert that an imma-

terial geometric point can exercise no physical action,

and he did very much toward demonstrating the ter-

restrial nature of the heavenly bodies. Borelli (in his

work on the satellites of the Jupiter) conceives the

planets as floating between layers of ether of differing

densities. They have a natural tendency to approach

their central body, (the term attraction is avoided,)

which is offset by the centrifugal force set up by the

revolution. Borelli illustrates his theory by an experi-

ment very similar to that described by us in Fig. 106,

p. 162. As will be seen, he approaches very closely

to Newton. His theory is, though, a combination of

Descartes's and Newton's.

xv.

(See page 191.)

Newton illustrated the identity of terrestrial grav-

ity with the universal gravitation that determined the

motions of the celestial bodies, as follows. He con-

ceived a stone to be hurled with successive increases

of horizontal velocity from the top of a high moun-

tain. Neglecting the resistance of the air, the para-

bolas successively described by the stone will increase

in length until finally they will fall clear of the earth
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altogether, and the stone will be converted into a

satellite circling round the earth. Newton begins with

the fact of universal gravity. An explanation of the

phenomenon was not forthcoming, and it was not his

wont, he says, to frame hypotheses. Nevertheless he

could not set his thoughts at rest so easily, as is ap-

parent from his well-known letter to Bentley. That

gravity was immanent and innate in matter, so that

one body could act on another directly through empty
space, appeared to him absurd. But he is unable to

decide whether the intermediary agency is material or

immaterial (spiritual?). Like all his predecessors and

successors, Newton felt the need of explaining gravi-

tation, by some such means as actions of contact. Yet

the great success which Newton achieved in astron-

omy with forces acting at a distance as the basis of

deduction, soon changed the situation very consider-

ably. Inquirers accustomed themselves to these forces

as points of departure for their explanations and the

impulse to inquire after their origin soon disappeared

almost completely. The attempt was now made to

introduce these forces into all the departments of

physics, by conceiving bodies to be composed of par-

ticles separated by vacuous interstices and thus acting

on one another at a distance. Finally even, the re-

sistance of bodies to pressure and impact, this is to

say, even forces of contact, were explained by forces

acting at a distance between particles. As a fact, the

functions representing the former are more compli-

cated than those representing the latter.

The doctrine of forces acting at a distance doubt-

less stood in highest esteem with Laplace and his

contemporaries. Faraday's unbiassed and ingenious

conceptions and Maxwell's mathematical formulation
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of them again turned the tide in favor of the forces

of contact. Divers difficulties had raised doubts in

the minds of astronomers as to the exactitude of New-

ton's law, and slight quantitative variations of it were

looked for. After it had been demonstrated, however,

that electricity travelled with finite velocity, the ques-

tion of a like state of affairs in connexion with the

analogous action of gravitation again naturally arose.

As a fact, gravitation bears a close resemblance to

electrical forces acting at a distance, save in the single

respect that so far as we know, attraction only and

not repulsion takes place in the case of gravitation.

Foppl ("Ueber eine Erweiterung des Gravitations-

gesetzes, ,, Sitzungsber. d. Munch. Akad., 1897, p. 6 et

seq.) is of opinion, that we may, without becoming

involved in contradictions, assume also with respect

to gravitation negative masses, which attract one an-

other but repel positive masses, and assume therefore

also finite fields of gravitation, similar to the electric

fields. Drude (in his report on actions at a distance

made for the German Naturforscherversammlung of

1897) enumerates many experiments for establishing

a velocity of propagation for gravitation, which go

back as far as Laplace. The result is to be regarded

as a negative one, for the velocities which it is at all

possible to consider as such, do not accord with one

another, though they are all very large multiples of

the velocity of light. Paul Gerber alone ("Ueber die

raumliche u. zeitliche Ausbreitung der Gravitation,"

Zeitschrift f. Math. u. Phys., 1898, II.), from the peri-

helial motion of Mercury, forty-one seconds in a cen-

tury, finds the velocity of propagation of gravitation

to be the same as that of light. This would speak in

favor of the ether as the medium of gravitation. (Com-
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pare W. Wien, " Ueber die Moglichkeit einer elektro-

magnetischen Begriindung der Mechanik," Archives

Nderlandaises, The Hague, 1900, V., p. 96.)

XVI.

(See page 195.)

It should be observed that the notion of mass as

quantity of matter was psychologically a very natural

conception for Newton, with his peculiar develop-

ment. Critical inquiries as to the origin of the con-

cept of matter could not possibly be expected of a

scientist in Newton's day. The concept developed

quite instinctively ; it is discovered as a datum per-

fectly complete, and is adopted with absolute ingenu-

ousness. The same is the case with the concept of

force. But force appears conjoined with matter. And,

inasmuch as Newton invested all material particles

with precisely identical gravitational forces, inasmuch

as he regarded the forces exerted by the heavenly

bodies on one another as the sum of the forces of the

individual particles composing them, naturally these

forces appear to be inseparably conjoined with the

quantity of matter. Rosenberger has called attention

to this fact in his book, Newton und seine physikalischen

Principien (Leipzig, 1895, especially page 192).

I have endeavored to show elsewhere {Analysis of

the Sensations, Chicago, 1897) how starting from the

constancy of the connexion between different sensa-

tions we have been led to the assumption of an abso-

lute constancy, which we call substance, the most ob-

vious and prominent example being that of a moveable

body distinguishable from its environment. And see-

ing that such bodies are divisible into homogeneous

parts, of which each presents a constant complexus
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of properties, we are induced to form the notion of a

substantial something that is quantitatively variable,

which we call matter. But that which we take away

from one body, makes its appearance again at some

other place. The quantity of matter in its entirety,

thus, proves to be constant. Strictly viewed, how-

ever, we are concerned with precisely as many sub-

stantial quantities as bodies have properties, and

there is no other function left for matter save that of

representing the constancy of connexion of the several

properties of bodies, of which man is one only. (Com-

pare my Principles of Heat, German edition, 1896,

page 425.)

XVII.

(See page 216.)

Of the theories of the tides enunciated before

Newton, that of Galileo alone may be briefly men-

tioned. Galileo explains the tides as due to the rela-

tive motion of the solid and liquid parts of the earth,

and regards this fact as direct evidence of the motion

of the earth and as a cardinal

argument in favor of the Co-

pernican system. If the earth

(Fig. 240) rotates from the

west to the east, and is affected

at the same time with a pro-

gressional motion, .the parts of

the earth at a will move with the sum, and the parts

at b with the difference, of the two velocities. The

water in the bed of the ocean, which is unable to fol-

low this change in velocity quickly enough, behaves

like the water in a plate swung rapidly back and forth,

or like that in the bottom of a skiff which is rowed
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with rapid alterations of speed : it piles up now in

the front and now at the back. This is substantially

the view that Galileo set forth in the Dialogue on the

Two World Systems. Kepler's view, which supposes

attraction by the moon, appears to him mystical and

childish. He is of the opinion that it should be rele-

gated to the category of explanations by "sympathy"

and "antipathy," and that it admits as easily of refu-

tation as the doctrine according to which the tides

are created by radiation and the consequent expansion

of the water. That on his theory the tides rise only

once a day, did not, of course, escape Galileo's atten-

tion. But he deceived himself with regard to the

difficulties involved, believing himself able to explain

the daily, monthly, and yearly periods by considering

the natural oscillations of the water and the altera-

tions to which its motions are subject. The principle

of relative motion is a correct feature of this theory,

but it is so infelicitously applied that only an ex-

tremely illusive theory could result. We will first

convince ourselves that the conditions supposed to

be involved would not have the effect ascribed to

them. Conceive a homogeneous sphere of water;

any other effect due to rotation than that of a corres-

ponding oblateness we should not expect. Now, sup-

pose the ball to acquire in addition a uniform motion

of progression. Its various parts will now as before

remain at relative rest with respect to one another.

For the case in question does not differ, according to

our view, in any essential respect from the preceding,

inasmuch as the progressive motion of the sphere

may be conceived to be replaced by a motion in the

opposite direction of all surrounding bodies. Even

for the person who is inclined to regard the motion
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as an "absolute" motion, no change is produced in

the relation of the parts to one another by uniform

motion of progression. Now, let us cause the sphere,

the parts of which have no tendency to move with re-

spect to one another, to congeal at certain points, so

that sea-beds with liquid water in them are produced.

The undisturbed uniform rotation will continue, and

consequently Galileo's theory is erroneous.

But Galileo's idea appears at first blush to be ex-

tremely plausible; how is the paradox explained? It

is due entirely to a negative conception of the law of

inertia. If we ask what acceleration the water expe-

riences, everything is clear. Water having no weight

would be hurled off at the beginning of rotation;

water having weight, on the other hand, would de

scribe a central motion around the center of the earth

With its slight velocity of rotation it would be forced

more and more toward the center of the earth, with

just enough of its centripetal acceleration counter-

acted by the resistance of the mass lying beneath,

as to make the remainder, conjointly with the given

tangential velocity, sufficient for motion in a circle.

Looking at it from this point of view, all doubt and

obscurity vanishes. But it must in justice be added

that it was almost impossible for Galileo, unless his

genius were supernatural, to have gone to the bottom

of the matter. He would have been obliged to antici-

pate the great intellectual achievements of Huygens

and Newton.

XVIII.

(See page 218.)

H. Streintz's objection {Die physikalischen Grund-

lagen dcr Mechanik, Leipsic, 1883, p. 117), that a com-
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parison of masses satisfying my definition can be ef-

fected only by astronomical means, I am unable to

admit. The expositions on pages 202, 218-221 amply

refute this. Masses produce in each other accelera-

tions in impact, as well as when subject to electric

and magnetic forces, and when connected by a string

on Atwood's machine. In my Elements of Physics

(second German edition, 1891, page 27) I have shown

how mass-ratios can be experimentally determined on

a centrifugal machine, in a very elementary and pop-

ular manner. The criticism in question, therefore,

may be regarded as refuted.

My definition is the outcome of an endeavor to

establish the interdependence of phenomena and to re-

move all metaphysical obscurity, without accomplish-

ing on this account less than other definitions have

done. I have pursued exactly the same course with

respect to the ideas, " quantity of electricity " (" On
the Fundamental Concepts of Electrostatics," 1883,

Popular Scientific Lectures, Open Court Pub. Co., Chi-

cago, 1898), "temperature," "quantity of heat " {Zeit-

schrift fur den physikalischen und chemischen Unterricht,

Berlin, 1888, No. 1), and so forth. With the view

here taken of the concept of mass is associated, how-

ever, another difficulty, which must also be carefully

noted, if wre would be rigorously critical in our analy-

sis of other concepts of physics, as for example the

concepts of the theory of heat. Maxwell made refer-

ence to this point in his investigations of the concept

of temperature, about the same time as I did with re-

spect to the concept of heat. I would refer here to

the discussions on this subject in my Principles of

Heat (German edition, Leipsic, 1896), particularly

page 41 and page 190.
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XIX.

(See page 226.)

My views concerning physiological time, the sen-

sation of time, and partly also concerning physical

time, I have expressed elsewhere (see Analysis of the

Sensations, 1886, Chicago, Open Court Pub. Co., 1897,

pp. 109-118, 179-181). As in the study of thermal

phenomena we take as our measure of temperature an

arbitrarily chosen indicator of volume, which varies in

almost parallel correspondence with our sensation of

heat, and which is not liable to the uncontrollable

disturbances of our organs of sensation, so, for simi-

lar reasons, we select as our measure of time an arbi-

trarily chosen motion, (the angle of the earth's rotation,

or path of a free body,) which proceeds in almost

parallel correspondence with our sensation of time.

If we have once made clear to ourselves that we are

concerned only with the ascertainment of the inter-

dependence of phenomena, as I pointed out as early as

1865 (Uebcr den Zeitsinn des Ohres, Sitzungsberichte der

Wiener Akademie) and 1866 (Fichte's Zeitschrift fur

Philosophic), all metaphysical obscurities disappear.

(Compare J Epstein, Die logischen Principien der Zeit-

viessung, Berlin, 1887.)

I have endeavored also {Principles of Heat, German

edition, page 51) to point out the reason for the natu-

ral tendency of man to hypostatise the concepts which

have great value for him, particularly those at which

he arrives instinctively, without a knowledge of their

development. The considerations which I there ad-

duced for the concept of temperature may be easily

applied to the concept of time, and render the origin
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of Newton's concept of "absolute" time intelligible.

Mention is also made there (page 338) of the connex-

ion obtaining between the concept of energy and the

irreversibility of time, and the view is advanced that

the entropy of the universe, if it could ever possibly

be determined, would actually represent a species of

absolute measure of time. I have finally to refer here

also to the discussions of Petzoldt ("Das Gesetz der

Eindeutigkeit," Vierteljahrsschriftfur wissenschaftlieh

e

Philosophic, 1894, page 146), to which I shall reply in

another place.

xx.

(See page 238.)

Of the treatises which have appeared since 1883

on the law of inertia, all of which furnish welcome

evidence of a heightened interest in this question, I

can here only briefly mention that of Streintz (Physi-

kalische Grundlagen der Mechanik, Leipsic, 1883) and

that of L. Lange {Die geschichtliche Entwicklung des

Bewegungsbegriffes, Leipsic, 1886).

The expression <
' absolute motion of translation"

Streintz correctly pronounces as devoid of meaning

and consequently declares certain analytical deduc-

tions, to which he refers, superfluous. On the other

hand, with respect to rotation, Streintz accepts New-

ton's position, that absolute rotation can be distin-

guished from relative rotation. In this point of view,

therefore, one can select every body not affected with

absolute rotation as a body of reference for the ex-

pression of the law of inertia.

I cannot share this view. For me, only relative

motions exist (Prhallung der Arbeit, p. 48 ; Science of

Mechanics, p. 229), and I can see, in this regard, no
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distinction between rotation and translation. When a

body moves relatively to the fixed vStars, centrifugal

forces are produced ; when it moves relatively to some

different body, and not relatively to the fixed stars,

no centrifugal forces are produced. I have no objec-

tion to calling the first rotation "absolute" rotation,

if it be remembered that nothing is meant by such a

designation except relative rotation with respect to the

fixed stars. Can we fix Newton's bucket of water,

rotate the fixed stars, and then prove the absence of

centrifugal forces?

The experiment is impossible, the idea is mean-

ingless, for the two cases are not, in sense-perception,

distinguishable from each other. I accordingly re-

gard these two cases as the same case and Newton's

distinction as an illusion {Science of Mechanics, page

232).

But the statement is correct that it is possible to

find one's bearings in a balloon shrouded in fog, by

means of a body which does not rotate with respect

to the fixed stars. But this is nothing more than an

indirect orientation with respect to the fixed stars ; it

is a mechanical, substituted for an optical, orienta-

tion.

I wish to add the following remarks in answer to

Streintz's criticism of my view. My opinion is not to

be confounded with that of Euler (Streintz, pp. 7, 50),

who, as Lange has clearly shown, never arrived at

any settled and intelligible opinion on the subject.

Again, I never assumed that remote masses only, and

not near ones, determine the velocity of a body

(Streintz, p. 7); I simply spoke of an influence inde-

pendent of distance. In the light of my expositions

at pages 222-245, the unprejudiced and careful reader
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will scarcely maintain with Streintz (p. 50), that after

so long a period of time, without a knowledge of

Newton and Euler, I have only been led to views

which these inquirers so long ago held, but were

afterwards, partly by them and partly by others, re-

jected. Even my remarks of 1872, which were all

that Streintz knew, cannot justify this criticism. These

were, for good reasons, concisely stated, but they are

by no means so meagre as they must appear to one

who knows them only from Streintz's criticism. The

point of view which Streintz occupies, I at that time

expressly rejected.

Lange's treatise is, in my opinion, one of the best

that have been written on this subject. Its methodi-

cal movement wins at once the reader's sympathy. Its

careful analysis and study, from historical and criti-

cal points of view, of the concept of motion, have

produced, it seems to me, results of permanent value.

I also regard its clear emphasis and apt designation

of the principle of "particular determination" as a

point of much merit, although the principle itself, as

well as its application, is not new. The principle is

really at the basis of all measurement. The choice of

the unit of measurement is convention ; the number

of measurement is a result of inquiry. Every natural

inquirer who is clearly conscious that his business is

simply the investigation of the interdependence of

phenomena, as I formulated the point at issue a long

time ago (1865-1866), employs this principle. When,

for example {Mechanics, p. 218 et seq.), the negative

inverse ratio of the mutually induced accelerations of

two bodies is called the mass-ratio of these bodies,

this is a convention, expressly acknowledged as arbi-

trary ; but that these ratios are independent of the
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kind and of the order of combination of the bodies is

a result of inquiry. I might adduce numerous similar

nstances from the theories of heat and electricity as

well as from other provinces. Compare Appendix II.

Taking it in its simplest and most perspicuous

form, the law of inertia, in Lange's view, would read

as follows

:

Three material points, Pi, P2 , P$, are simultane-

ously hurled from the same point in space and then

left to themselves. The moment we are certain that

the points are not situated in the same straight line,

we join each separately with any fourth point in space,

Q. These lines of junction, which we may respec-

tively call G\, 6*2, 6?3, form, at their point of meeting,

a three-faced solid angle. If now we make this solid

angle preserve, with unaltered rigidity, its form, and

constantly determine in such a manner its position,

that P\ shall always move on the line G\, P2 on the

line G2, P3 on the line C3 , these lines may be regarded

as the axis of a coordinate or inertial system, with

respect to which every other material point, left to it-

self, will move in a straight line. The spaces de-

scribed by the free points in the paths so determined

will be proportional to one another.

A system of coordinates with respect to which

three material points move in a straight line is, ac-

cording to Lange, under the assumed limitations, a

simple convention. That with respect to such a system

also a fourth or other free material point will move in

a straight line, and that the paths of the different

points will all be proportional to one another, are re-

sults of inquiry.

In the first place, we shall not dispute the fact

that the law of inertia can be referred to such a system
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of time and space coordinates and expressed in this

form. Such an expression is less fit than Streintz's

for practical purposes, but, on the other hand, is, for

its methodical advantages, more attractive. It espe-

cially appeals to my mind, as a number of years ago I

was engaged with similar attempts, of which not the

beginnings but only a few remnants {Mechanics, pp.

234-235) are left. I abandoned these attempts, be-

cause I was convinced that we only apparently evade

by such expressions references to the fixed stars and

the angular rotation of the earth. This, in my opin-

ion, is also true of the forms in which Streintz and

Lange express the law.

In point of fact, it was precisely by the considera-

tion of the fixed stars and the rotation of the earth

that we arrived at a knowledge of the law of inertia

as it at present stands, and without these foundations

we should never have thought of the explanations

here discussed {Mechanics, 232-233). The considera-

tion of a small number of isolated points, to the ex-

clusion of the rest of the world, is in my judgment in-

admissible {Mechanics, pp. 229-235).

It is quite questionable, whether a fourth material

point, left to itself, would, with respect to Lange's

"inertial system," uniformly describe a straight line,

if the fixed stars were absent, or not invariable, or

could not be regarded with sufficient approximation

as invariable.

The most natural point of view for the candid in-

quirer must still be, to regard the law of inertia pri-

marily as a tolerably accurate approximation, to refer

it, with respect to space, to the fixed stars, and, with

respect to time, to the rotation of the earth, and to

await the correction, or more precise definition, of
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our knowledge from future experience, as I have ex-

plained on page 237 of this book.

I have still to mention the discussions of the law

of inertia which have appeared since 1889. Reference

may first be made to the expositions of Karl Pearson

{Grammar of Science, 1892, page 477), which agree

with my own, save in terminology. P. and J.
Fried-

lander {Absolute unci relative Bewegung, Berlin, 1896)

have endeavored to determine the question by means

of an experiment based on the suggestions made by

me at pages 217-218; I have grave doubts, however,

whether the experiment will be successful from the

quantitative side. I can quite freely give my assent

to the discussions of Johannesson {Das Beharrungs-

gesetz, Berlin, 1896), although the question remains

unsettled as to the means by which the motion of a

body not perceptibly accelerated by other bodies is to

be determined. For the sake of completeness, the

predominantly dialectic treatment by M. E. Vicaire,

Societe scientifique de Bruxelles, 1895, as well as the in^

vestigations of J. G. MacGregor, Royal Society of Can-

ada, 1895, which are only remotely connected with

the question at issue, remain to be mentioned. I have

no objections to Budde's conception of space as a sort

of medium (compare page 230), although I think that

the properties of this medium should be demonstrable

physically in some other manner, and that they should

not be assumed ad hoc. If all apparent actions at a

distance, all accelerations, turned out to be effected

through the agency of a medium, then the question

would appear in a different light, and the solution is

to be sought perhaps in the view set forth on page

230.
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XXI.

(Seepage 255.)

Section VIII., "Retrospect of the Development

of Dynamics," was written in the year 1883. It con-

tains, especially in paragraph 7, on pages 254 and

255, an extremely general programme of a future sys-

tem of mechanics, and it is to be remarked that the

Mechanics of Hertz, which appeared in the year 1894,*

marks a distinct advance in the direction indicated.

It is impossible in the limited space at our disposal

to give any adequate conception of the copious ma-

terial contained in this book, and besides it is not our

purpose to expound new systems of mechanics, but

merely to trace the development of ideas relating to

mechanics. Hertz's book must, in fact, be read by

every one interested in mechanical problems.

Hertz's criticisms of prior systems of mechanics,

with which he opens his work, contains some very

noteworthy epistemological considerations, which from

our point of view (not to be confounded either with

the Kantian or with the atomistic mechanical concepts

of the majority of physicists), stand in need of certain

modifications. The constructive imagesf (or better,

perhaps, the concepts), which we consciously and

purposely form of objects, are to be so chosen that

the "consequences which necessarily follow from them

in thought " agree with the " consequences which nec-

essarily follow from them in nature." It is demanded

of these images or concepts that they shall be logically

*H. Hertz, Die Principien der Mechanik in neuem Zusammenhange dar-

gestellt. Leipzig, 1894.

t Hertz uses the term Bild (image or picture) in the sense of the old Eng-

lish philosophical use of idea, and applies it to systems of ideas or concepts

relating to any province.
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admissible, that is to say, free from all self-contradic-

tions ; that they shall be correct, that is, shall con-

form to the relations obtaining between objects; and

finally that they shall be appropriate, and contain the

least possible superfluous features. Our concepts, it

is true, are formed consciously and purposely by us,

but they are nevertheless not formed altogether arbi-

trarily, but are the outcome of an endeavor on our

part to adapt our ideas to our sensuous environment.

The agreement of the concepts with one another is a

requirement which is logically necessary, and this

logical necessity, furthermore, is the only necessity

that we have knowledge of. The belief in a necessity

obtaining in nature arises only in cases where our

concepts are closely enough adapted to nature to

ensure a correspondence between the logical infer-

ence and the fact. But the assumption of an adequate

adaptation of our ideas can be refuted at any moment

by experience. Hertz's criterion of appropriateness

coincides with our criterion of economy.

Hertz's criticism that the Galileo-Newtonian sys-

tem of mechanics, particularly the notion of force, lacks

clearness (pages 7, 14, 15) appears to us justified only

in the case of logically defective expositions, such as

Hertz doubtless had in mind from his student days.

He himself partly retracts his criticism in another

place (pages 9, 47) ; or at any rate, he qualifies it. But

the logical defects of some individual interpretation

cannot be imputed to systems as such. To be sure,

it is not permissible to-day (page 7) "to speak of a

force acting in one aspect only, or, in the case of cen-

tripetal force, to take account of the action of inertia

twice, once as a mass and again as a force. " But

neither is this necessary, since Huygens and Newton
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were perfectly clear on this point. To characterise

forces as being frequently ll empty-running wheels/'

as being frequently not demonstrable to the senses,

can scarcely be permissible. In any event, ci forces"

are decidedly in the advantage on this score as com-

pared with "hidden masses" and "hidden motions."

In the case of a piece of' iron lying at rest on a table,

both the forces in equilibrium, the weight of the iron

and the elasticity of the table, are very easily demon-

strable.

Neither is the case with energic mechanics so bad

as Hertz would have it, and as to his criticism against

the employment of minimum principles, that it in-

volves the assumption of purpose and presupposes

tendencies directed to the future, the present work

shows in another passage quite distinctly that the

simple import of minimum principles is contained in

an entirely different property from that of purpose.

Every system of mechanics contains references to the

future, since all must employ the concepts of time,

velocity, etc.

Nevertheless, though Hertz's criticism of existing

systems of mechanics cannot be accepted in all their

severity, his own novel views must be regarded as a

great step in advance. Hertz, after eliminating the

concept of force, starts from the concepts of time,

space, and mass alone, with the idea in view of giv-

ing expression only to that which can actually be ob-

served. The sole principle which he employs may
be conceived as a combination of the law of inertia

and Gauss's principle of least constraint. Free masses

move uniformly in straight lines. If they are put in

connexion in any manner they deviate, in accordance

with Gauss's principle, as little as possible from this
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motion; their actual motion is more nearly that of

free motion than any other conceivable motion. Hertz

says the masses move as a result of their connexion

in a straightcst path. Every deviation of the motion

of a mass from uniformity and rectilinearity is due, in

his system, not to a force but to rigid connexion with

other masses. And where such matters are not vis-

ible, he conceives hidden masses with hidden motions.

All physical forces are conceived as the effect of such

actions. Force, force-function, energy, in his system,

are secondary and auxiliary concepts only. Let us

now look at the most important points singly, and

ask to what extent was the way prepared for them.

The notion of eliminating force may be reached in

the following manner. It is part of the general idea

of the Galileo-Newtonian system of mechanics to

conceive of all connexions as replaced by forces which

determine the motions required by the connexions;

conversely, everything that appears as force may be

conceived to be due to a connexion. If the first idea

frequently appears in the older systems, as being his-

torically simpler and more immediate, in the case of

Hertz the latter is the more prominent. If we reflect

that in both cases, whether forces or connexions be

presupposed, the actual dependence of the motions

of the masses on one another is given for every in-

stantaneous conformation of the system by linear dif-

ferential equations between the co ordinates of the

masses, then the existence of these equations may be

considered the essential thing,—the thing established

by experience. Physics indeed gradually accustoms

itself to look upon the description of the facts by dif-

ferential equations as its proper aim,—a point of view

which was taken also in Chapter V. of the present



552 THE SCIENCE OF MECHANICS.

work (1883). But with these the general applicabil-

ity of Hertz's mathematical formulations is recognised

without our being obliged to enter upon any further

interpretation of the forces or connexions.

Hertz's fundamental law may be described as a

sort of generalised law of inertia, modified by connex-

ions of the masses. For the simpler cases, this view-

was a natural one, and doubtless often forced itself

upon the attention. In fact, the principle of the con-

servation of the center of gravity and of the conserva-

tion of areas was actually described in the present

work (Chapter III.) as a generalised law of inertia.

If we reflect that by Gauss's principle the connexion

of the masses determines a minimum of deviation from

those motions which it would describe for itself, we

shall arrive at Hertz's fundamental law the moment we

consider all the forces as due to the connexions. For

on severing all connexions, only isolated masses mov-

ing by the law of inertia are left as ultimate elements.

Gauss very distinctly asserted that no substantially

new principle of mechanics could ever be discovered.

And Hertz's principle also is only new in form, for it

is identical with Lagrange's equations. The minimum

condition which the principle involves does not refer

to any enigmatic purpose, but its import is the same

as that of all minimum laws. That alone takes place

which is dynamically determined (Chapter III.). The

deviation from the actual motion is dynamically not

determined; this deviation is not present; the actual

motion is therefore unique.*

See Petzoldt's excellent article "Das Gesetz der Eindeutigkeit " {Vier-

teljahrsschrift fur ivissenschaftliche Philosophie, XIX., page 146, especially

page 186). R. Henke is also mentioned in this article as having approached

Hertz's view in his tract Ueber die Methode der kleinsten Quadrate (Leipsic,

1894).
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It is hardly necessary to remark that the physical

side of mechanical problems is not only not disposed

of, but is not even so much as touched, by the elabo-

ration of such a formal mathematical system of me-

chanics. Free masses move uniformly in straight

lines. Masses having different velocities and direc-

tions if connected mutually affect each other as to

velocity, that is, determine in each other accelera-

tions. These physical experiences enter along with

purely geometrical and arithmetical theorems into the

formulation, for which the latter alone would in no

wise be adequate ; for that which is uniquely deter-

mined mathematically and geometrically only, is for

that reason not also uniquely determined mechani-

cally. But we discussed at considerable length in

Chapter II., that the physical principles in question

were not at all self-evident, and that even their exact

significance was by no means easy to establish.

In the beautiful ideal form which Hertz has given

to mechanics, its physical contents have shrunk to

an apparently almost imperceptible residue. It is

scarcely to be doubted that Descartes if he lived to-

day would have seen in Hertz's mechanics, far more

than in Lagrange's "analytic geometry of four dimen-

sions," his own ideal. For Descartes, who in his op-

position to the occult qualities of Scholasticism would

grant no other properties to matter than extension

and motion, sought to reduce all mechanics and phys-

ics to a geometry of motions, on the assumption of a

motion indestructible at the start.

It is not difficult to analyse the psychological cir-

cumstances which led Hertz to his system. After in-

quirers had succeeded in representing electric and

magnetic forces that act at a distance as the results



554 THE SCIENCE OF MECHANICS.

of motions in a medium, the desire must again have

awakened to accomplish the same result with respect

to the forces of gravitation, and if possible for all

forces whatsoever. The idea was therefore very nat-

ural to discover whether the concept of force generally

could not be eliminated. It cannot be denied that

when we can command all the phenomena taking

place in a medium, together with the large masses

contained in it, by means of a single complete pic-

ture, our concepts are on an entirely different plane

from what they are when only the relations of these

isolated masses as regards acceleration are known.

This will be willingly granted even by those who are

convinced that the interaction of parts in contact is

not more intelligible than action at a distance. The

present tendencies in the development of physics are

entirely in this direction.

If we are not content to leave the assumption of

occult masses and motions in its general form, but

should endeavor to investigate them singly and in de-

tail, we should be obliged, at least in the present state

of our physical knowledge, to resort, even in the sim-

plest cases, to fantastic and even frequently question-

able fictions, to which the given accelerations would

be far preferable. For example, if a mass m is mov-

ing uniformly in a circle of radius r, with a velocity

v, which we are accustomed to refer to a centripetal

m7,2

force -—- proceeding from the center of the circle,
r

we might instead of this conceive the mass to be

rigidly connected at the distance 2r with one of the

same size having a contrary velocity. Huygens's cen-

tripetal impulsion would be another example of a

force replaced by a connexion. As an ideal program
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Hertz's mechanics is simpler and more beautiful, but

for practical purposes our present system of mechan-

ics is preferable, as Hertz himself (page 47), with his

characteristic candor, admits.*

XXII.

(See page 255.)

The views put forward in the first two chapters of

this book were worked out by me a long time ago.

At the start they were almost without exception coolly

rejected, and only gradually gained friends. All the

essential features of my Mechanics I stated originally

in a brief communication of five octavo pages entitled

On the Definition of Mass. These were the theorems

now given at page 243 of the present book. The

communication was rejected by Poggendorf's Anna

ten, and it did not appear until a year later (1868), in

Carl's Repertorium. In a lecture delivered in 1871, I

outlined my epistemological point of view in natural

science generally, and with special exactness for phys-

ics. The concept of cause is replaced there by the

concept of function; the determining of the depend-

ence of phenomena on one another, the economic ex-

position of actual facts, is proclaimed as the object,

and physical concepts as a means to an end solely.

I did not care now to impose upon any editor the re-

sponsibility for the publication of the contents of this

lecture, and the same was published as a separate

tract in 1872^ In 1874, when Kirchhoff in his Me-

chanics came out with his theory of "description" and

Compare J. Classen, "Die Principien der Mechanik bei Hertz mid

Boltzmann " [jahrbuch der Hamburgischen wissenschaftlichcn An\talten,

XV., p. 1, Hamburg, 1898).

f Erhaltung der Arbeit, Prague, 1872.
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other doctrines, which were analogous in part only to

rny views, and still aroused the "universal astonish-

ment " of his colleagues, I became resigned to my
fate. But the great authority of Kirchhoff gradually

made itself felt, and the consequence of this also

doubtless was that on its appearance in 1883 my Me-
chanics did not evoke so much surprise. In view of

the great assistance afforded by Kirchhoff, it is alto-

gether a matter of indifference with me that the pub-

lic should have regarded, and partly does so still, my
interpretation of the principles of physics as a contin-

uation and elaboration of Kirchhoff's views ; whilst in

fact mine were not only older as to date of publica-

tion, but also more radical.*

The agreement with my point of view appears

upon the whole to be increasing, and gradually to ex-

tend over more extensive portions of my work. It

would be more in accord with my aversion for polem-

ical discussions to wait quietly and merely observe

what part of the ideas enunciated may be found ac-

ceptable. But I cannot suffer my readers to remain

in obscurity with regard to the existing disagreements,

and I have also to point out to them the way in which
they can find their intellectual bearings outside of

this book, quite apart from the fact that esteem for

my opponents also demands a consideration of their

criticisms. These opponents are numerous and of all

kinds: historians, philosophers, metaphysicians, logi-

cians, educators, mathematicians, and physicists. I

can make no pretence to any of these qualifications in

any superior degree. I can only select here the most
important criticisms, and answer them in the capacity

of a man who has the liveliest and most ingenuous in-

*See the preface to the first edition.
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terest in understanding the growth of physical ideas.

I hope that this will also make it easy for others to

find their way in this field and to form their own judg-

ment.

P. Volkmann in his writings on the epistemology*

of physics appears as my opponent only in certain

criticisms on individual points, and particularly by

his adherence to the old systems and by his predilec-

tion for them. It is the latter trait, in fact, that sepa-

rates us ; for otherwise Volkmann's views have much
affinity with my own. He accepts my adaptation of

ideas, the principle of economy and of comparison,

even though his expositions differ from mine in indi-

vidual features and vary in terminology. I, for my
part, find in his writings the important principle of

isolation and superposition, appropriately emphasised

and admirably described, and I willingly accept them.

I am also willing to admit that concepts which at the

start are not very definite must acquire their "retro-

active consolidation" by a "circulation of knowl-

edge," by an "oscillation" of attention. I also agree

with Volkmann that from this last point of view New-

ton accomplished in his day nearly the best that it

was possible to do; but I cannot agree with Volk-

mann when he shares the opinion of Thomson and

Tait, that even in the face of the substantially differ-

ent epistemological needs of the present day, New-
ton's achievement is definitive and exemplary. On
the contrary, it appears to me that if Volkmann's pro-

cess of "consolidation" be allowed complete sway, it

must necessarily lead to enunciations not differing in

* Erkenntnisstheoretische Grundzilge dcrNaturivissenschaft. Leipzig, 1896,

— Ueber Newton's Philosophia Naturalis, Konigsberg, 1898.

—

Einfuhrung in

das Sttidium der theoretischen Physik, Leipsic, 1900. Our references are to

the last-named work.
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any essential point from my own. I follow with gen-

uine pleasure the clear and objective discussions of

G. Heymans.* The differences which I have with

Hoflerf and PoskeJ relate in the main to individual

points. So far as principles are concerned, I take

precisely the same point of view as Petzoldt, § and we

differ only on questions of minor importance. The

numerous criticisms of others, which either refer to

the arguments of the writers just mentioned, or are

supported by analogous grounds, cannot out of regard

for the reader be treated at length. It will be suffi-

cient to describe the character of these differences by

selecting a few individual, but important, points.

A special difficulty seems to be still found in ac-

cepting my definition of mass. Streintz (compare p.

540) has remarked in criticism of it that it is based

solely upon gravity, although this was expressly ex-

cluded in my first formulation of the definition (1868).

Nevertheless, this criticism is again and again put

forward, and quite recently even by Volkmann (Joe.

cit., p. 18). My definition simply takes note of the

fact that bodies in mutual relationship, whether it be

that of action at a distance, so called, or whether rigid

or elastic connexions be considered, determine in one

another changes of velocity (accelerations). More than

this, one does not need to know in order to be able to

form a definition with perfect assurance and without

the fear of building on sand. It is not correct as

*Die Gesetze and Elemente des wisscnschaftlichen Denkcns, II., Leipzig

1894.

t Studien zur gegeniv'drtigen Philosophic der maihematischen Mechanik,

Leipzig, 1900.

% Vierteljahrsschrift fur wissenschaftliche Philosophic', Leipzig, 1884, paga

385.

§ " Das Gesetz der Eindeutigkeit ( Vierteljahrsschriftfur wissenschaftliche

Philosophic, XIX., page 146),
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Hofler asserts (Joe. eit., p. 77), that this definition

tacitly assumes one and the same foree acting on both

masses. It does not assume even the notion of force,

since the latter is built up subsequently upon the no-

tion of mass, and gives then the principle of action

and reaction quite independently and without falling

into Newton's logical error. In this arrangement one

concept is not misplaced and made to rest on another

which threatens to give way under it. This is, as I

take it, the only really serviceable aim of Volkmann's

"circulation" and " oscillation. " After we have de-

fined mass by means of accelerations, it is not difficult

to obtain from our definition apparently new variant

concepts like "capacity for acceleration," "capacity

for energy of motion" (Hofler, loe. eit., page 70). To
accomplish anything dynamically with the concept of

mass, the concept in question must, as I most em-

phatically insist, be a dynamieal concept. Dynamics

cannot be constructed with quantity of matter by it-

self, but the same can at most be artificially and arbi-

trarily attached to it (Joe. eit., pages 71, 72). Quantity

of matter by itself is never mass, neither is it thermal

capacity, nor heat of combustion, nor nutritive value,

nor anything of the kind. Neither does "mass"
play a thermal, but only a dynamical role (compare

Hofler, loe. eit., pages 71, 72). On the other hand,

the different physical quantities are proportional to

one another, and two or three bodies of unit mass

form, by virtue of the dynamic definition, a body of

twice or three times the mass, as is analogously the

case also with thermal capacity by virtue of the ther-

mal definition. Our instinctive craving for concepts

involving quantities of things, to which Hofler (Joe.

eit
,
page 72) is doubtless seeking to give expression,
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and which amply suffices for every-day purposes, is

something that no one will think of denying. But

a scientific concept of "quantity of matter" should

properly be deduced from the proportionality of the

single physical quantities mentioned, instead of, con-

trariwise, building up the concept of mass upon

"quantity of matter." The measurement of mass by

means of weight results from my definition quite nat-

urally, whereas in the ordinary conception the meas-

urability of quantity of matter by one and the same

dynamic measure is either taken for granted outright,

or proof must be given beforehand by special experi-

ments, that equal weights act under all circumstances

as equal masses. In my opinion, the concept of mass

has here been subjected to thorough analysis for the

first time since Newton. For historians, mathema-

ticians, and physicists appear to have all treated the

question as an easy and almost self evident one. It

is, on the contrary, of fundamental significance and

is deserving of the attention of my opponents.

Many criticisms have been made of my treatment

of the law of inertia. I believe I have shown (1868),

somewhat as Poske has done (1884), that any deduc-

tion of this law from a general principle, like the law

of causality, is inadmissible, and this view has now

won some support (compare Heymans, loc. cil., page

432). Certainly, a principle that has been universally

recognised for so short a time only cannot be regarded

as a priori self-evident. Heymans (loc. cit., p. 427) cor-

rectly remarks that axiomatic certainty was ascribed

a few centuries ago to a diametrically opposite form

of the law. Heymans sees a supra-empirical element

only in the fact that the law of inertia is referred to

absolute space, and in the further fact that both in
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the law of inertia and in its ancient diametrically op-

posite form something constant is assumed in the con-

dition of the body that is left to itself (Joe. at., page

433)- We shall have something to say further on re-

garding the first point, and as for the latter it is psy-

chologically intelligible without the aid of metaphys-

ics, because constant features alone have the power

to satisfy us either intellectually or practically,

—

which is the reason that we are constantly seeking for

them. Now, looking at the matter from an entirely

unprejudiced point of view, the case of these axio-

matic certainties will be found to be a very peculiar

one. One will strive in vain with Aristotle to con-

vince the common man that a stone hurled from the

hand would be necessarily brought to rest at once after

its release, were it not for the air which rushed in be-

hind and forced it forwards. But he would put just

as little credence in Galileo's theory of infinite uni-

form motion. On the other hand, Benedetti's theory

of the gradual diminution of the vis imprcssa, which

belongs to the period of unprejudiced thought and of

liberation from ancient preconceptions, will be ac-

cepted by the common man without contradiction.

This theory, in fact, is an immediate reflexion of ex-

perience, while the first-mentioned theories, which

idealise experience in contrary directions, are a pro-

duct of technical professional reasoning. They exer-

cise the illusion of axiomatic certainty only upon the

mind of the scholar whose entire customary train of

thought would be thrown out of gear by a disturbance

of these elements of his thinking. The behavior of

inquirers toward the law of inertia seems to me from

a psychological point of view to be adequately ex-

plained by this circumstance, and I am inclined to
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allow the question of whether the principle is to be

called an axiom, a postulate, or a maxim, to rest in

abeyance for the time being. Heymans, Poske, and

Petzoldt concur in finding an empirical and a supra-

empirical element in the law of inertia. According to

Heymans (Joe. cit., p. 438) experience simply afforded

the opportunity for applying an a priori valid prin-

ciple. Poske thinks that the empirical origin of the

principle does not exclude its a priori validity (Joe.

eit., pp. 401 and 402). Petzoldt also deduces the law

of inertia in part only from experience, and regards it

in its remaining part as given by the law of unique

determination. I believe I am not at variance with

Petzoldt in formulating the issue here at stake as fol-

lows : It first devolves on experience to inform us

what particular dependence of phenomena on one an-

other actually exists, what the thing to be determined

i s?—and experience alone can instruct us on this

point. If we are convinced that we have been suffi-

ciently instructed in this regard, then when adequate

data are at hand we regard it as unnecessary to keep

on waiting for further experiences ; the phenomenon

is determined for us, and since this alone is determi-

nation, it is uniquely determined. In other words, if

I have discovered by experience that bodies determine

accelerations in one another, then in all circumstances

where such determinative bodies are lacking I shall

expect with unique determination uniform motion in

a straight line. The law of inertia thus results imme-

diately in all its generality, without our being obliged

to specialise with Petzoldt ; for every deviation from

uniformity and rectilinearity takes acceleration for

granted. I believe I am right in saying that the same

fact is twice formulated in the law of inertia and in
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the statement that forces determine accelerations (p.

143). If this be granted, then an end is also put to

the discussion as to whether a vicious circle is or is

not contained in the application of the law of inertia

(Poske, Hofler).

My inference as to the probable manner in which

Galileo reached clearness regarding the law of inertia

was drawn from a passage in his third Dialogue,*

which was literally transcribed from the Paduan edi-

tion of 1744, Vol. III., page 124, in my tract on The

Conservation of Energy (Eng. Trans., in part, in my

Popular Scientific Lectures, third edition, Chicago,

The Open Court Publishing Co.). Conceiving a body

which is rolling down an inclined plane to be con-

ducted upon rising inclined planes of varying slopes,

the slight retardation which it suffers on absolutely

smooth rising planes of small inclination, and the re-

tardation zero, or unending uniform motion on a hori-

zontal plane, must have occurred to him. Wohlwill

was the first to object to this way of looking at the

matter (see page 524), and others have since joined

* " Constat jam, quod mobile ex quiete in A descendens per AB, gradus

acquirit velocitatis juxta temporis ipsius incrementum :
gradum vero in B

esse maximum acquisitorum, et suapte natura immutabil ter impressum,

sublatis scilicet causis accelerationis novae, aut retardationis :
accelerationis

inquam, si adhuc super extenso piano ulterius progrederetur ;
retardationis

vero, dum super planum acclive BC fit reflexio : in horizontali autem GH
nequabilis motus juxta gradum velocitatis ex A in B acquisitae in infinitum

jxtenderetur."
'

Tt is plain now tbat a movable body, starting from rest at A and de-
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him. He asserts that uniform motion in a circle and

horizontal motion still occupied distinct places in Ga-

lileo's thought, and that Galileo started from the an-

cient concepts and freed himself only very gradually

from them. It is not to be denied that the different

phases in the intellectual development of the great in-

quirers have much interest for the historian, and some

one phase may, in its importance in this respect, be

relegated into the background by the others. One

must needs be a poor psychologist and have little

knowledge of oneself not to know how difficult it is

to liberate oneself from traditional views, and how

even after that is done the remnants of the old ideas

still hover in consciousness and are the cause of occa-

sional backslidings even after the victory has been

practically won. Galileo's experience cannot have

been different. But with the physicist it is the in-

stant in which a new view flashes forth that is of

greatest interest, and it is this instant for which he

will always seek. I have sought for it, I believe I

have found it; and I am of the opinion that it left its

unmistakable traces in the passage in question. Poske

{Joe. cit., page 393) and Hofler (Joe. eit., pages in,

112) are unable to give their assent to my interpreta-

tion of this passage, for the reason that Galileo does

not expressly refer to the limiting case of transition

from the inclined to the horizontal plane ;
although

scending down the inclined plane AB, acquires a velocity proportional to

the increment of its time : the velocity possessed at B is the greatest of the

velocities acquired, and by its nature immutably impressed, provided all

causes of new acceleration or retardation are taken away: I say accelera-

tion, having in view its possible further progress along the plane extended ;

retardation, in view of the possibility of its being reversed and made to

mount the ascending plane BC. But in the horizontal plane GH its uniform

motion, with the velocity acquired in the descent from A to B, will be con-

tinued ad iiifi • 7 ">"
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Poske grants that the consideration of limiting cases

was frequently employed by Galileo, and although

Hotter admits having actually tested the educational

efficacy of this device with students. It would indeed

be a matter of surprise if Galileo, who may be re-

garded as the inventor of the principle of continuity,

should not in his long intellectual career have applied

the principle to this most important case of all for

him. It is also to be considered that the passage

does not form part of the broad and general discus-

sions of the Italian dialogue, but is tersely couched, in

the dogmatic form of a result, in Latin. And in this

way also the "velocity immutably impressed" may

have crept in.*

*Even granting that Galileo reached his knowledge of the law of inertia

only gradually, and that it was presented to him merely as an accidental dis-

covery, nevertheless the following passages which are taken from the Paduan

edition of 1744 will show that his limitation of the law to horizontal motion

was justified by the inherent nature of the subject treated ;
and the assump-

tion that Galileo toward the end of his scientific career did not possess a full

knowledge of the law, can hardly be maintained.

" Sagr. Ma quando 1'artiglieria si piantasse non a perpendicolo, ma in-

clinata verso qualche parte, qual dovrebbe esser' il moto della pa'la? and-

rebbe ella forse, come nel Taltro tiro, per la linea perpendicolare, e ritor-

nando anco poi per l'istessa ?
"

"Simpl. Questo non farebbe ella, ma uscita del pezzo seguiterebbe il

suo moto per la linea retta, che continua la dirittura della canna, se non in

quanto il proprio peso la farebbe declinar da tal dirittura verso terra."

" Sagr. Talche la dirittura della canna e la regolatrice del moto della

palla : ne fuori di tal linea si muove, o muoverebbe, se '1 peso proprio non

la facesse delinare in giu "-Dialogo sopra i due mass/mi sistemi del

mondo.
" Sagr. But if the gun were not placed in the perpendicular, but were in-

clined in some direction ; what then would be the motion of the ball ? Would

it follow, perhaps, as in the other case, the perpendicular, and in returning

fall also by the same lino ?
"

" Simpl. This it will not do, but having left the cannon it will follow its

own motion in the straight line which is a continuation of the axis of the

barrel, save in so far as its own weight shall cause it to deviate from that

direction toward the earth."

« Sagr. So that the axis of the barrel is the regulator of the motion of the

ball: and it nether does nor will move outside of that line unless its own

weight causes it to drop downwards. . .

.''
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The physical instruction which I enjoyed was in

all probability just as bad and just as dogmatic as it

was the fortune of my older critics and colleagues to

enjoy. The principle of inertia was then enunciated

as a dogma which accorded perfectly with the system.

I could understand very well that disregard of all ob-

stacles to motion led to the principle, or that it must

be discovered, as Appelt says, by abstraction ; never-

theless, it always remained remote and within the

comprehension of supernatural genius only. And
where was the guarantee that with the removal of all

obstacles the diminution of the velocity also ceased?

Poske (Joe. cit., p. 395) is of the opinion that Galileo,

to use a phrase which I have repeatedly employed,

"discerned" or "perceived''' the principle immediately.

But what is this discerning? Enquiring man looks

here and looks there, and suddenly catches a glimpse

of something he has been seeking or even of some-

thing quite unexpected, that rivets his attention.

Now, I have shown how this "discerning" came

about and in what it consisted. Galileo runs his eye

over several different uniformly retarded motions, and

suddenly picks out from among them a uniform, in-

"Attendere insuper licet, quod velocitatis gradus, quicunque in mobili

reperiatur, est in illo suapte natura indelebiliter irnpressus, dum externae

causae accelerations, aut retardationis tollantur, quod in solo horizontali

piano contingit : nam in planis declivibus adest jam causa accelerations

majoris, in acclivibus vero retardationis. Ex quo pariter sequitur, motum in

horizontali esse quoque aeternum: si enim est aequabilis, non debiliatur,

aut remittitur, et multo minus tollitur."

—

Discorsi e dimostrazioni matema-

tiche, Dialogo terzo.

" Moreover, it is to be remarked that the degree of velocity a body has is

indestructibly impressed in it by its own nature, provided external causes of

acceleration or retardation are wanting,—which happens only on horizontal

planes: for on descending planes there is greater acceleration, and on as-

cending planes retardation. Whence it follows that motion in a horizontal

plane is perpetual : for if it remains the same, it is not diminished, or

abated, much less abolished."
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finitely continued motion, of so peculiar a character

that if it occurred by itself alone it would certainly

be regarded as something altogether different in kind.

But a very minute variation of the inclination trans-

forms this motion into a finite retarded motion, such

as we have frequently met with in our lives. And

now, no more difficulty is experienced in recognising

the identity between all obstacles to motion and re-

tardation by gravity,—wherewith the ideal type of un-

influenced, infinite, uniform motion is gained. As I

read this passage of Galileo's while still a young man,

a new light concerning the necessity of this ideal link

in our mechanics, entirely different from that of the

dogmatic exposition, flashed upon me. I believe that

every one will have the same experience who will ap-

proach this passage without prior bias. I have not

the least doubt that Galileo above all others experi-

enced that light. May my critics see to it how their

assent also is to be avoided.

I have now another important point to discuss in

opposition to C. Neumann,* whose well-known publi-

cation on this topic preceded minef shortly. I con-

tended that the direction and velocity which is taken

into account in the law of inertia had no comprehen-

sible meaning if the law was referred to "absolute

space." As a matter of fact, we can metrically deter-

mine direction and velocity only in a space of which

the points are marked directly or indirectly by given

bodies. Neumann's treatise and my own were suc-

cessful in directing attention anew to this point, which

* Die Principien der Galilei-Newton 'sc/ten T/ieorie, Leipzig, 1870.

+ Erhaltung der Arbeit, Prague, 1872. (Translated in part in the article

on "The Conservation of Energy," Popular Scientific Lectures, third edition,

Chicago, 1898.
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had already caused Newton and Euler much intellec-

tual discomfort; yet nothing more than partial at-

tempts at solution, like that of Streintz, have resulted.

I have remained to the present day the only one who

insists upon referring the law of inertia to the earth,

and in the case of motions of great spatial and tempo-

ral extent, to the fixed stars. Any prospect of com-

ing to an understanding with the great number of my
critics is, in consideration of the profound differences

of our points of view, very slight. But so far as I

have been able to understand the criticisms to which

my view has been subjected, I shall endeavor to an-

swer them.

Hofler is of the opinion that the existence of "ab-

solute motion" is denied, because it is held to be

"inconceivable." But it is a fact of "more painstak-

ing self-observation" that conceptions of absolute

motion do exist. Conceivability and knowledge of

absolute motion are not to be confounded. Only the

latter is wanting here {Joe. cit., pages 120, 164). . . .

Now, it is precisely with knowledge that the natural

inquirer is concerned. A thing that is beyond the

ken of knowledge, a thing that cannot be exhibited to

the senses, has no meaning in natural science. I have

not the remotest desire of setting limits to the imagi-

nation of men, but I have a faint suspicion that the

persons who imagine they have conceptions of "ab-

solute motions," in the majority of cases have in mind

the memory pictures of some actually experienced

relative motion ; but let that be as it may, for it is in

any event of no consequence. I maintain even more

than Hofler, viz., that there exist sensory illusions of

absolute motions, which can subsequently be repro-

duced at any time. Every one that has repeated my
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experiments on the sensations of movement has ex-

perience d the full sensory power of such illusions.

One imagines one is flying off with one's entire en-

vironment, which remains at relative rest with respect

to the body; or that one is rotating in a space that is

distinguished by nothing that is tangible. But no

measure can be applied to this space of illusion ;
its

existence cannot be proved to another person, and it

cannot be employed for the metrical and conceptual

description of the facts of mechanics; it has nothing

to do with the space of geometry.* Finally, when

Hofler {Joe. cit., p. 133) brings forward the argument

that "in every relative motion one at least of the

bodies moving with reference to each other must be

affected with absolute motion,"— I can only say that

for the person who considers absolute motion as mean-

ingless in physics, this argument has no force what-

ever. But I have no further concern here with philo-

sophical questions. To go into details as Hofler has

in some places Joe. cit., pp. 124-126) would serve

no purpose before an understanding had been reached

on the main question.

Heymans (Joe. cit., pp. 412, 448) remarks that an

inductive, empirical mechanics could have arisen, but

that as a matter of fact a different mechanics, based

on the non-empirical concept of absolute motion, has

arisen. The fact that the principle of inertia has

always been suffered to hold for absolute motion

which is nowhere demonstrable, instead of being re-

* I flatter myself on being able to resist the temptation to infuse lightness

into a serious discussion by showing its ridiculous side, but in reflecting on

these problems I was involuntarily forced to think of the question which a

very estimable but eccentric man once debated with me as to whether a yard

of cloth in one's dreams is as long as a real yard of cloth.- Is the dream-yard

to be really introduced into mechanics as a standard of measurement?
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garded as holding good for motion with respect to

some actually demonstrable system of co-ordinates, is

a problem which is almost beyond power of solution

by the empirical theory. Heymans regards this as a

problem that can have a metaphysical solution only.

In this I cannot agree with Heymans. He admits

that relative motions only are given in experience.

With this admission, as with that of the possibility of

an empirical mechanics, I am perfectly content. The

rest, I believe, can be explained simply and without

the aid of metaphysics. The first dynamic principles

were unquestionably built up on empirical founda-

tions. The earth was the body of reference ; the tran-

sition to the other co-ordinate systems took place

very gradually. Huygens saw that he could refer the

motion of impinging bodies just as easily to a boat on

which they were placed, as to the earth. The devel-

opment of astronomy preceded that of mechanics con-

siderably. When motions were observed that were

at variance with known mechanical laws when re-

ferred to the earth, it was not necessary immediately

to abandon these laws again. The fixed stars were

present and ready to restore harmony as a new sys-

tem of reference with the least amount of changes in

the concepts. Think only of the oddities and difficul-

ties which would have resulted if in a period of great

mechanical and physical advancement the Ptolemaic

system had been still in vogue,—a thing not at all in-

conceivable.

But Newton referred all of mechanics to absolute

space! Newton is indeed a gigantic personality; little

worship of authority is needed to succumb to his in-

fluence. Yet even his achievements are not exempt

from criticism. It appears to be pretty much one and
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the same thing whether we refer the laws of motion to

absolute space, or enunciate them in a perfectly ab-

stract form ; that is to say, without specific mention

of any system of reference. The latter course is un

precarious and even practical; for in treating special

cases every student of mechanics looks for some ser

viceable system of reference. But owing to the fact

that the first course, wherever there was any real

issue at stake, was nearly always interpreted as having

the same meaning as the latter, Newton's error was

fraught with much less danger than it would other-

wise have been, and has for that reason maintained

itself so long. It is psychologically and historically

intelligible that in an age deficient in epistemological

critique empirical laws should at times have been

elaborated to a point where they had no meaning. It

cannot therefore be deemed advisable to make meta-

physical problems out of the errors and oversights of

our scientific forefathers, but it is rather our duty to

correct them, be they small people or great. I would

not be understood as saying that this has never hap-

pened.

Petzoldt (Joe. cit., pp. 192 et seq.), who is in ac-

cord with me in my rejection of absolute motion, ap-

peals to a principle of Avenarius,* by a consideration

of which he proposes to remove the difficulties in-

volved in the problem of relative motion. I am per-

fectly familiar with the principle of Avenarius, but I

cannot understand how all the physical difficulties in-

volved in the present problem can be avoided by re-

ferring motions to one's own body. On the contrary,

in considering physical dependencies abstraction must

*Der menschliche Weltbegriff, Leipzig, 1891, p. 130.
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be made from one's own body, so far as it exercises

any influence.*

The most captivating reasons for the assumption

of absolute motion were given thirty years ago by C.

Neumann (Joe. cit., p. 27). If a heavenly body be

conceived rotating about its axis and consequently

subject to centrifugal forces and therefore oblate,

nothing, so far as we can judge, can possibly be

altered in its condition by the removal of all the re-

maining heavenly bodies. The body in question will

continue to rotate and will continue to remain oblate.

But if the motion be relative only, then the case of

rotation will not be distinguishable from that of rest.

All the parts of the heavenly body are at rest with re-

spect to one another, and the oblateness would neces-

sarily also disappear with the disappearance of the

rest of the universe. I have two objections to make
here. Nothing appears to me to be gained by making

a meaningless assumption for the purpose of eliminat-

ing a contradiction. Secondly, the celebrated mathe-

matician appears to me to have made here too free a

use of intellectual experiment, the fruitfulness and

value of which cannot be denied. When experiment-

r.g in thought, it is permissible to modify unimportant

circumstances in order to bring out new features in a

given case ; but it is not to be antecedently assumed

that the universe is without influence on the phenom-

enon here in question. If it is eliminated and contra-

dictions still result, certainly this speaks in favor of

the importance of relative motion, which, if it involves

difficulties, is at least free from contradictions.

* Analyse der Empfindungen, zweite Auflage, Jena, 1900, pp. it, 12. 33, 38

208; English translation, Chicago, The Open Court Pub. Co., 1897, pp. 13 et

seq.
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Volkmann (loc. cit., p. 53) advocates an absolute

orientation by means of the ether. I have already

spoken on this point (comp. pp. 230, 547), but I am
extremely curious to know how one ether particle is to

be distinguished from another. Until some means of

distinguishing these particles is found, it will be pref-

erable to abide by the fixed stars, and where these

forsake us to confess that the true means of orienta-

tion is still to be found.

Taking everything together, I can only say that I

cannot well see wThat is to be altered in my exposi-

tions The various points stand in necessary connex-

ion. After it has been discovered that the behavior

of bodies toward one another is one in which acceler-

ations are determined,—a discovery which was twice

formulated by Galileo and Newton, once in a general

and again in a special form as a law of inertia,—it is

possible to give only one rational definition of mass,

and that a purely dynamical definition. It is not at

all, in my judgment, a matter of taste.* The concept

of force and the principle of action and reaction fol-

low of themselves. And the elimination of absolute

motion is equivalent to the elimination of what is

physically meaningless.

It would be not only taking a very subjective and

short-sighted view of science, but it would also be

foolhardy in the extreme, were I to expect that my
views in their precise individual form should be in-

corporated without opposition into the intellectual

systems of my contemporaries. The history of sci-

ence teaches that the subjective, scientific philoso-

* My definition of mass takes a more organic and more natural place i 1

Hertz's mechanics than his own, for it contains implicitly the germ of his

"fundamental law."
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phies of individuals are constantly being corrected

and obscured, and in the philosophy or constructive

image of the universe which humanity gradually

adopts, only the very strongest features of the

thoughts of the greatest men are, after some lapse of

time, recognisable. It is merely incumbent on the in-

dividual to outline as distinctly as possible the main

features of his own view of the world.

XXIII.

(See page 273.)

Although signal individual performances in sci-

ence cannot be gainsaid to Descartes, as his studies

on the rainbow and his enunciation of the law of re-

fraction show, his importance nevertheless is con-

tained rather in the great general and revolutionary

ideas which he promulgated in philosophy, mathe-

matics, and the natural sciences. The maxim of

doubting everything that has hitherto passed for es-

tablished truth cannot be rated too high ; although it

was more observed and exploited by his followers

than by himself. Analytical geometry with its mod-

ern methods is the outcome of his idea to dispense

with the consideration of all the details of geometrical

figures by the application of algebra, and to reduce

everything to the consideration of distances. He was

a pronounced enemy of occult qualities in physics,

and strove to base all physics on mechanics, which

he conceived as a pure geometry of motion. He has

shown by his experiments that he regarded no physi-

cal problem as insoluble by this method. He took

too little note of the fact that mechanics is possible

only on the condition that the positions of the bodies

are determined in their dependence on one another by
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a relation of force, by a function of time; and Leibnitz

frequently referred to this deficiency. The mechani-

cal concepts which Descartes developed with scanty

and vague materials could not possibly pass as copies

of nature, and were pronounced to be phantasies even

by Pascal, Huygens, and Leibnitz. It has been re-

marked, however, in a former place, how strongly

Descartes's ideas, in spite of these facts, have per-

sisted to the present day. He also exercises a power-

ful influence upon physiology by his theory of vision,

and by his contention that animals were machines,

—

a theory which he naturally had not the courage to

extend to human beings, but by which he anticipated

the idea of reflex motion (compare Duhem, L'dvolution

des theories physiques, Louvain, 1896).

XXIV.

(See page 378.)

To the exposition given on pages 377 and 378, in

the year 1883, I have the following remarks to add.

It will be seen that the principle of least action, like

all other minimum principles in mechanics, is a sim-

ple expression of the fact that in the instances in

question precisely so much happens as possibly can

happen under the circumstances, or as is determined,

viz., uniquely determined, by them. The deduction

of cases of equilibrium from unique determination has

already been discussed, and the same question will be

considered in a later place. With respect to dynamic

questions, the import of the principle of unique de-

termination has been better and more perspicuously

elucidated than in my case by J. Petzoldt in a work

entitled Maxima, Minima und Oekonomie (Altenburg,

1891). He says {Joe. eit., page 11): "In the case of
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all motions, the paths actually traversed admit of be-

ing interpreted as signal instances chosen from an in-

finite number of conceivable instances. Analytically,

this has no other meaning than that expressions may

always be found which yield the differential equations

of the motion when their variation is equated to zero,

—for the variation vanishes only when the integral

assumes a unique value."

As a fact, it will be seen that in the instances

treated at pages 377 and 378 an increment of velocity

is uniquely determined only in the direction of the

force, while an infinite number of equally legitimate

incremental components of velocity at right angles to

the force are conceivable, which are, however, for the

reason given, excluded by the principle of unique de-

termination. I am in entire accord with Petzoldt

when he says :
" The theorems of Euler and Hamilton,

and not less that of Gauss, are thus nothing more

than analytic expressions for the fact of experience

that the phenomena of nature are uniquely deter-

mined." The uniqueness of the minimum is determi-

native.

I should like to quote here, from a note which I

published in the November number of the Prague

Lotos for 1873, the following passage: "The static

and dynamical principles of mechanics may be ex-

pressed as isoperimetrical laws. The anthropomor-

phic conception is, however, by no means essential,

as may be seen, for example, in the principle of vir-

tual velocities. If we have once perceived that the

work A determines velocity, it will readily be seen

that wThere work is not done when the system passes

into all adjacent positions, no velocity can be ac-

quired, and consequently that equilibrium obtains.
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The condition of equilibrium will therefore be 8A = 0;

where A need not necessarily be exactly a maximum
or minimum. These laws are not absolutely restricted

to mechanics; they may be of very general scope.

If the change in the form of a phenomenon B be de-

pendent on a phenomenon A, the condition that B
shall pass over into a certain form will be SA = 0."

As will be seen, I grant in the foregoing passage

that it is possible to discover analogies for the prin-

ciple of least action in the most various departments

of physics without reaching them through the circuit-

ous course of mechanics. I look upon mechanics, not

as the ultimate explanatory foundation of all the other

provinces, but rather, owing to its superior formal

development, as an admirable prototype of such an

explanation. In this respect, my view differs appar-

ently little from that of the majority of physicists, but

the difference is an essential one after all. In further

elucidation of my meaning, I should like to refer to

the discussions which I have given in my Principles

of Heat (particularly pages 192, 318, and 356, German
edition), and also to my article "On Comparison in

Physics" {Popular Scientific Lectures, English trans-

lation, page 236). Noteworthy articles touching on

this point are: C. Neumann, "Das Ostwald'sche

Axiom des Energieumsatzes" (JBerichte der k. sacks.

Gesellschaft, 1892, p. 184), and Ostwald, " Ueber das

Princip des ausgezeichneten Falles" (Joe. cit., 1893,

p. 600).

xxv.

(See page 480.)

The Ausdehnungslehre of 1844, in which Grassmann
expounded his ideas for the first time, is in many re-
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spects remarkable. The introduction to it contains

epistemological remarks of value. The theory of spa-

tial extension is here developed as a general science,

of which geometry is a special tri-dimensional case
;

and the opportunity is taken on this occasion of sub-

mitting the foundations of geometry to a rigorous cri-

tique. The new and fruitful concepts of the addition

of line-segments, multiplication of line-segments, etc.,

have also proved to be applicable in mechanics.

Grassmann likewise submits the Newtonian principles

to criticism, and believes he is able to enunciate them

in a single expression as follows: "The total force

(or total motion) which is inherent in an aggregate of

material particles at any one time is the sum of the

total force (or total motion) which has inhered in it

at any former time, and all the forces that have been

imparted to it from without in the intervening time;

provided all forces be conceived as line-segments

constant in direction and in length, and be referred

to points which have equal masses. " By force Grass-

mann' understands here the indestructibly impressed

velocity. The entire conception is much akin to that

of Hertz. The forces (velocities) are represented as

line-segments, the moments as surfaces enumerated

in definite directions, etc.,—a device by means of

which every development takes a very concise and

perspicuous form. But Grassmann finds the main

advantage of his procedure in the fact that every step

in the calculation is at the same time the clear ex-

pression of every step taken in the thought ; whereas,

in the common method, the latter is forced entirely

into the background by the introduction of three arbi-

trary co-ordinates. The difference between the ana-

lytic and the synthetic method is again done away
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with, and the advantages of the two are combined.

The kindred procedure of Hamilton, which has been

illustrated by an example on page 528, will give some

idea of these advantages.

xxvi.

(See page 485.)

In the text I have employed the term "cause" in

the sense in which it is ordinarily used. I may add

that with Dr. Cams,* following the practice of the

German philosophers, I distinguish "cause," ox Real-

grund, from Erkenntnissgrund. I also agree with Dr.

Carus in the statement that < ' the signification of cause

and effect is to a great extent arbitrary and depends

much upon the proper tact of the observer, "f
The notion of cause possesses significance only as

a means of provisional knowledge or orientation. In

any exact and profound investigation of an event the

inquirer must regard the phenomena as dependent on

one another in the same way that the geometer regards

the sides and angles of a triangle as dependent on one

another. He will constantly keep before his mind, in

this way, all the conditions of fact.

XXVII.

(See page 494.)

My conception of economy of thought was devel-

oped out of my experience as a teacher, out of the

work of practical instruction. I possessed this con-

ception as early as 1861, when I began my lectures

as Privat-Docent, and at the time believed that I was

* See his Grund, Ursache und Zweck, R. v. Grumbkow, Dresden, 1881,

and his Fundamental Problems, pp. 79-91, Chicago: The Open Court Publish-

ing Co., 1891.

t Fundamental Problems, p. 84.
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in exclusive possession of the principle,—a conviction

which will, I think, be found pardonable. I am now,

on the contrary, convinced that at least some presenti-

ment of this idea has always, and necessarily must

have, been a common possession of all inquirers who
have ever made the nature of scientific investigation

the subject of their thoughts. The expression of this

opinion may assume the most diverse forms; for ex-

ample, I should most certainly characterise the guid-

ing theme of simplicity and beauty which so distinctly

marks the work of Copernicus and Galileo, not only

as sesthetical, but also as economical. So, too, New-

ton's Regulce philosophandi are substantially influenced

by economical considerations, although the economi-

cal principle as such is not explicitly mentioned. In

an interesting article, "An Episode in the History of

Philosophy," published in The Open Court for April

4, 1895, Mr. Thomas J. McCormack has shown that

the idea of the economy of science was very near to

the thought of Adam Smith {Essays), In recent times

the view in question has been repeatedly though di-

versely expressed, first by myself in my lecture Ueber

die Erhaltung der Arbeit (1875), then by Clifford in

his Lectures and Essays (1872), by Kirchhoff in his

Mechanics (1874), and by Avenarius (1876). To an

oral utterance of the political economist A. Herrmann

I have already made reference in my Erhaltung der

Arbeit {p. 55, note 5); but no work by this author

treating especially of this subject is known to me.

I should also like to make reference here to the

supplementary expositions given in my Popular Scien-

tific Lectures (English edition, pages 186 et seq.) and

in my Principles ofHeat (German edition, page 294).

In the latter work, the criticisms of Petzoldt {Viertel-
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jahrsschrift fur wissenschaftliche Philosophic, 1891) are

considered. Husserl, in the first part of his work,

Logische Untersuchungen (1900), has recently made

some new animadversions on my theory of mental

economy; these are in part answered in my reply to

Petzoldt. I believe that the best course is to post-

pone an exhaustive reply until the work of Husserl is

completed, and then see whether some understanding

cannot be reached. For the present, however, I

should like to premise certain remarks. As a natural

inquirer, I am accustomed to begin with some special

and definite inquiry, and allow the same to act upon

me in all its phases, and to ascend from the special

aspects to more general points of view. I followed

this custom also in the investigation of the develop-

ment of physical knowledge. I was obliged to pro-

ceed in this manner for the reason that a theory of

theory was too difficult a task for me, being doubly

difficult in a province in which a minimum of indis-

putable, general, and independent truths from which

everything can be deduced is not furnished at the

start, but must first be sought for. An undertaking

of this character would doubtless have more prospect

of being successful if one took mathematics as one's

subject-matter. I accordingly directed my attention

to individual phenomena: the adaptation of ideas to

facts, the adaptation of ideas to one another,* mental

* Popular Scientific Lectures, English edition, pp. 244 et seq., where the

adaptation of thoughts to one another is described as the object of theory

proper. Grassmann appears to me to say pretty much the same in the intro-

duction to his Ausdehnungslehre of 1844, page xix: "The first division of all

the sciences is that into real and formal, of which the real sciences depict

reality in thought as something independent of thought, and find their truth

in the agreement of thought with that reality; the formal sciences, on the

other hand, have as their object that which has been posited by thought

and itself, find their truth in the agreement of the mental processes with one

another."
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economy, comparison, intellectual experiment, the

constancy and continuity of thought, etc. In this in-

quiry, I found it helpful and restraining to look upon
every-day thinking and science in general, as a bio-

logical and organic phenomenon, in which logical

thinking assumed the position of an ideal limiting

case. I do not doubt for a moment that the investi-

gation can be begun at both ends. I have also de-

scribed my efforts as epistemological sketches.* It

may be seen from this that I am perfectly able to dis-

tinguish between psychological and logical questions,

as I believe every one else is who has ever felt the

necessity of examining logical processes from the

psychological side. But it is doubtful if anyone who
has carefully read even so much as the logical analysis

of Newton's enunciations in my Mechanics, will have

the temerity to say that I have endeavored to erase

all distinctions between the " blind" natural thinking

of every-day life and logical thinking. Even if the

logical analysis of all the sciences were complete, the

biologico-psychological investigation of their develop-

ment would continue to remain a necessity for me,

—

which would not exclude our making a new logical

analysis of this last investigation. If my theory of

mental economy be conceived merely as a teleological

and provisional theme for guidance, such a concep-

tion does not exclude its being based on deeper foun-

dations, f but goes toward making it so. Mental econ-

omy is, however, quite apart from this, a very clear

logical ideal which retains its value even after its logi-

cal analysis has been completed. The systematic

form of a science can be deduced from the same prin-

* Principles ofHeat, Preface to the first German edition.

t Analysis of the Sensations, second German edition, pages 64-65.
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ciples in many different manners, but some one of

these deductions will answer to the principle of econ-

omy better than the rest, as I have shown in the case

of Gauss's dioptrics.* So far as I can now see, I do

not think that the investigations of Husserl have

affected the results of my inquiries. As for the rest,

I must wait until the remainder of his work is pub-

lished, for which I sincerely wish him the best suc-

cess.

When I discovered that the idea of mental econ-

omy had been so frequently emphasised before and

after my enunciation of it, my estimation of my per-

sonal achievement was necessarily lowered, but the

idea itself appeared to me rather to gain in value on

this account; and what appears to Husserl as a de-

gradation of scientific thought, the association of it

with vulgar or " blind " (?) thinking, seemed to me to

be precisely an exaltation of it. It has outgrown the

scholar's study, being deeply rooted in the life of hu-

manity and reacting powerfully upon it.

XXVIII.

(See page 497-)

The paragraph on page 497, which was written in

1883, met with little response from the majority of

physicists, but it will be noticed that physical exposi-

tions have since then closely approached to the ideal

there indicated. Hertz's "Investigations on the Prop-

agation of Electric Force" (1892) affords a good in-

stance of this description of phenomena by simple

differential equations.

* Principles ofHeat, German editim, page 394.



584 THE SCIENCE OF MECHANICS,

XXIX.

(See page 501.)

In Germany, Mayer's works at first met with a very

cool, and in part hostile, reception ; even difficulties

of publication were encountered; but in England

they found more speedy recognition. After they had

been almost forgotten there, amid the wealth of new

facts being brought to light, attention was again

called to them by the lavish praise of Tyndall in his

book Heat a Mode of Motion (1863). The consequence

of this was a pronounced reaction in Germany, which

reached its culminating point in Duhring's work Robert

Mayer, the Galileo of the Nineteenth Century (1878). It

almost appeared as if the injustice that had been

done to Mayer was now to be atoned for by injustice

towards others. But as in criminal law, so here, the

sum of the injustice is only increased in this way, for

no algebraic cancelation takes place. An enthusiastic

and thoroughly satisfactory estimate of Mayer's per-

formances was given by Popper in an article in Aus-

larid (1876, No. 35), which is also very readable from

the many interesting epistemological aper^us that it

contains. I have endeavored {Principles of Heat) to

give a thoroughly just and sober presentation of the

achievements of the different inquirers in the domain

of the mechanical theory of heat. It appears from

this that each one of the inquirers concerned made

some distinctive contribution which expressed their

respective intellectual peculiarities. Mayer may be

regarded as the philosopher of the theory of heat and

energy; Joule, who was also conducted to the prin-

ciple of energy by philosophical considerations, fur-
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nishes the experimental foundation ; and Helmholtz

gave to it its theoretical physical form. Helmholtz,

Clausius, and Thomson form a transition to the views

of Carnot, who stands alone in his ideas. Each one

of the first-mentioned inquirers could be eliminated.

The progress of the development would have been

retarded thereby, but it would not have been checked

(compare the edition of Mayer's works by Weyrauch,

Stuttgart, 1893).

xxx.

(See page 504.)

The principle of energy is only briefly treated in

the text, and I should like to add here a few remarks

on the following four treatises, discussing this subject,

which have appeared since 1883 : Die physikalischen

Grundsdtze der elektrisehen Kraftiibertragung, by J.

Popper, Vienna, 1883 ; Die Lehre von der Energie, by

G. Helm, Leipsic, 1887; Das Princip der Erhaltung

der Energie, by M. Planck, Leipsic, 1887; and Das

Problem der Continuitdt in der Mathematik und Mecha-

nik, by F. A. Muller, Marburg, 1886.

The independent works of Popper and Helm are,

in the aim they pursue, in perfect accord, and they

quite agree in this respect with my own researches,

so much so in fact that I have seldom read anything

that, without the obliteration of individual differences,

appealed in an equal degree to my mind. These two

authors especially meet in their attempt to enunciate

a general science of energetics ; and a suggestion of

this kind is also found in a note to my treatise Ueber

die Erhaltung der Arbeit, page 54. Since then "ener-

getics" has been exhaustively treated by Helm, Ost-

wald, and others.



586 THE SCIENCE OF MECHANICS.

In 1872, in this same treatise (pp. 42 et seqq.), I

showed that our belief in the principle of excluded

perpetual motion is founded on a more general belief

in the unique determination of one group of (mechani-

cal) elements, a/3y . . ., by a group of different ele-

ments, xyz . . . Planck's remarks at pages 99, 133,

and 139 of his treatise essentially agree with this;

they are different only in form. Again, I have re-

peatedly remarked that all forms of the law of causal-

ity spring from subjective impulses, which nature is

by no means compelled to satisfy. In this respect

my conception is allied to that of Popper and Helm.

Planck (pp. 21 et seqq,, 135) and Helm (p. 25 et

seqq.) mention the "metaphysical" points of view

by which Mayer was controlled, and both remark

(Planck, p. 25 et seqq., and Helm, p. 28) that also

Joule, though there are no direct expressions to justify

the conclusion, must have been guided by similar

ideas. To this last I fully assent.

With respect to the so-called "metaphysical"

points of view of Mayer, which, according to Helm-

holtz, are extolled by the devotees of metaphysical

speculation as Mayer's highest achievement, but which

appear to Helmholtz as the weakest feature of his

expositions, I have the following remarks to make.

With maxims, such as, "Out of nothing, nothing

comes," "The effect is equivalent to the cause," and

so forth, one can never convince another of anything.

How little such empty maxims, which until recently

were admitted in science, can accomplish, I have

illustrated by examples in my treatise Die Erhaltung

der Arbeit. But in Mayer's case these maxims are, in

my judgment, not weaknesses. On the contrary, they

are with him the expression of a powerful instinctive
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yearning, as yet unsettled and unclarified, after a

sound, substantial conception of what is now called

energy. This desire I should not exactly call meta-

physical. We now know that Mayer was not wanting

in the conceptual power to give to this desire clear-

ness. Mayer's attitude in this point was in no respect

different from that of Galileo, Black, Faraday, and

other great inquirers, although perhaps many were

more taciturn and cautious than he.

I have touched upon this point before in my Analy-

sis of the Sensations, Jena, 1886, English translation,

Chicago, 1897, p. 174 et seqq. Aside from the fact

that I do not share the Kantian point of view, in fact,

occupy no metaphysical point of view, not even that

of Berkeley, as hasty readers of my last-mentioned

treatise have assumed, I agree with F. A. Miiller's

remarks on this question (p. 104 et seqq.). For a

more exhaustive discussion of the principle of energy

see my Principles of Heat.
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Absolute, space, time, etc. (See the

nouns.)

Absolute units, 278, 284.

Abstractions, 482.

Acceleration, Galileo on, 131 et seq.;

Newton on, 238; also 218, 230, 236,

243, 245,

Action and reaction, 198-201, 242.

Action, least, principle of, 364-380,

454 ; sphere of, 385.

Adaptation, in nature, 452; of thoughts

to facts, 6, 515 et seq., 581 et seq.

Adhesion plates, 515

Aerometer, effect of suspended par-

ticles on, 208.

Aerostatics. See Air.

Affined, 166.

Air, expansive force of, 127; quanti-

tative data of, 124; weight of, 113;

pressure of, 114 et seq.; nature of,

517 et seq.

Air-pump, 122 et seq.

Aitken, 525.

Alcohol and water, mixture of, 384 et

seq.

Algebra, economy of, 486.

Algebraical mechanics, 466.

All, The, necessity of its considera-

tion in research, 235, 461, 516.

Analytical mechanics, 465-480.

Analytic method, 466.

Anaxbgoras, 509, 517.

Animal free in space, 290.

Animistic points of view in mechan-

ics, 461 et seq.

Appelt, 566.

Archimedes, on the lever and the

centre of gravity, 8-n ; critique of

his deduction, 13-14. 5*3 et seq.;

illustration of its value, 10; on hy-

drostatics, 86-88 ; various modes of

deduction of his hydrostatic prin-

ciple, 104; illustration of his prin-

ciple, 106.

Archytas, 510.

Areas, law of the conservation of,

293-305.

Aristotle, 509, 511, 517, 518.

Artifices, mental, 492 et seq.
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Atmosphere. See Air.

Atoms, mental artifices, 492.
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Atwood's machine, 149.

Automata, 511.

Avenarius, R., x, 571, 580.
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Baliani, 524.

Ballistic pendulum, 328.
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92.

Carnot, his performances, 501, 585;
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on, 579.
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285.

Central, centrifugal, and centripetal

force. See Force.

Centre of gravity, 14 et seq.- descent

of, 52 ; descent and ascent of, 174

et seq., 408 ; the law of the conser-

vation of the, 287-305.
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335 ; Mersenne, Descartes, and

Huygens on, 174 et seq.; relations

of, to centre of gravity, 180-185;

convertibility of, with point of sus-

pension, 186.

Centre of percussion, 327.

Centripetal impulsion, 528 et seq.

Chain, Stevinus's endless, 25 et seq.,

500; motion of, on inclined plane,

347.

Change, unrelated, 504.

Character, an ideal universal, 481.

Chinese language, 482.

Church, conflict of science and, 446.
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on the figure of the earth, 395 ; on

liquid equilibrium, 396 et seq.; on
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Classen, J., 555.

Classes and trades, the function of,
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Claasius, 497, 499, 501, 585-

Clifford, 580.

Coefficients, indeterminate, La-

grange's, 471 et seq.

Collision of bodies. See Impact.

Colors, analysis of, 481.

Column, a heavy, at rest, 258.

Commandinus, 87.

Communication, the economy of, 78.

Comparative physics, necessity of,

498.

Component of force, 34.

Composition, of forces, see Forces;

Gauss's principle and the, 364 ; no-

tion of, 526.

Compression of liquids and gases,

407.

Conradus, Balthasar, 308.

Conservation, of energy, 499 et seq.

585 et seq.; of quantity of motion,

Descartes and Leibnitz on, 272, 274,

purpose of the ideas of, 504.

Conservation of momentum, of the

centre of gravity, and of areas,

laws of, 287-305 ; these laws, the

expression of the laws of action

and reaction and inertia, 303.

Conservation of momentum and vis

viva interpreted, 326 et seq.

Constancy of quantity of matter, mo-

tion, and energy, theological basis

of, 456.

Constraint, 335, 352; least, principle

of, 350-364, 55o, 5/6.

Continuity, the principle of, 140, 490

et seq
, 565.

Continuum, physico-mechanical, 109.

Coordinates, forces a function of,

397. See Force-Junction.

Copernicus, 232, 457, 531, 580.

Coriolis, on vis viva and work, 272.

Counter-phenomena, 503.

Counter-work, 363, 366.

Counting, economy of, 486.

Courtivron, his law of equilibrium,

73-

Ctesibius, his air-gun, no, 511.

Currents, oceanic, 302.

Curtius Rufus, 210.
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Curves, maxima and minima of, 429.

Cycloids, 143, 186", 379, 427.

Cylinder, double, on a horizontal

surface, 60; rolling on an inclined

plane, 345.

Cylinders, axal, symbolising the re-

lations of the centres of gravity and

oscillation, 183.

D'Alembert, his settlement of the

dispute concerning the measure of

force, 149, 276; his principle, 331-

343-

D'Arcy, on the law of areas, 293.

Darwin, his theories, 452, 459.

Declination from free motion, 352-

356.

Deductive development of science,

421.

Democritus, 518.

Demonstration, the mania for, 18,82;

artificial, 82.

Departure from free motion, 355.

Derived units, 278.

Descartes, on the measure of force,

148, 250, 270, 272-276 ; on quantity of

motion, conservation of momen-

tum, etc., 272 et seq.; character of

his physical inquiries, 273, 528, 553,

574; his mechanical ideas, 250.

Descent, en inclined planes, 134 et

seq.; law of, 137; in chords of cir-

cles, 138; vertical, motion of,

treated by Hamilton's principle,

383; quickest, curve of, 426; of

centre of gravity, 52, 174 et seq.,

408.

Description, a fundamental feature

of science, 5, 555.

Design, evidences of, in nature, 452.

Determinants, economy 0^487.

Determination, particular, 544.

Determinative factors of physical

processes, 76.

Diels, 520.

Differences, of quantities, their r6le

in nature, 236; of velocities, 325.

Differential calculus, 424.

Differential laws, 255, 461.

Dimensions, theory of, 279.

Dioptrics, Gauss's economy of, 489.

Disillusionment, due to insight, 77-
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Dream-yard, 569.

Dub em, 575.

Diihring, x, 352, 584.

Dynamics, the development of the

principles of, 128-255; retrospect

of the development of, 245-255;

founded by Galileo, 128; proposed

new foundations for, 243 ; chief re-

sults of the development of, 245,

246; analytical, founded by La-

grange on the principle of virtual

velocities, 467.

Earth, figure of, 395 et seq.

Economical character of analytical

mechanics, 480.

Economy in nature, 459.

Economy of description, 5.

Economy of science, 481-494.

Economy of thought, the basis and

essence of science, ix, 6, 481 ; of

language, 481 ; of all ideas, 482 ; of

the ideas cause and effect, 484 ; of

the laws of nature, 485 ; of the law

of refraction, 485; of mathematics,

486; of determinants, 487; of cal-

culating machines, 488; of Gauss's

dioptrics, moment of inertia, force-

function, 489 ; history of Mach's

conception of, 579,

Efflux, velocity of liquid, 402 et seq.

Egyptian monuments, 1.

Eighteenth century, character of, 458.

Elastic bodies, 315, 317, 320.

Elastic rod, vibrations of, 490.

Elasticity, revision of the theory of,

496.

Electromotor, Page's, 262; motion of

a free, 296, et seq.

Elementary laws, see Differential

laws.

Ellipsoid, triaxal, 73; of inertia, 186;

central, 186.

Empedocles, 509, 517.

Encyclopaedists, French, 463.

Energetics, the science of, 585.

Energy, Galileo's use of the word,

271; conservation of, 499 et seq.;

potential and kinetic, 272, 499

;

principle of, 585 et seq. See Vis

Enlightenment, the age of, 458.

Epstein, 541.

Equations, of motion, 342; of me-

chanics, fundamental, 270.

Equilibrium, the decisive conditions

of, 53; dependence of. on a maxi-

mum or minimum of work, 69 ; sta-

ble, unstable, mixed, and neutral

equilibrium, 70-71 ; treated by

Gauss's principle, 355 ; figures of,

393 ; liquid, conditions of, 386 et

seq.

Equipotential surfaces. See Level

Surfaces.

Ergal, 499.

Error, our liability to, in the recon-

struction of facts, 79.

Ether, orientation by means of the,

573.

Euler, on the loi de refios, 68 ; on

moment of inertia, 179, 182, 186; on

the law of areas, 293 ; his form of

D'Alembert's principle, 337; on vis

viva, 348; on the principle of least

action, 368, 543, 576; on the isoperi-

metrical problems and the calculus

of variations, 433 et seq ; his theo-

logical proclivities, 449, 455; his

contributions to analytical me-

chanics, 466 ; on absolute motion,

543, 568.

Exchange of velocities in impact, 315.

Experience, 1 et seq., 481, 490.

Experimenting in thought, 523, 582.

Experiments, 509, 514.

Explanation, 6.

Extravagance in nature, 459.

Facts and hypotheses, 494, 496, 498.

Falling bodies, early views of, 128;

investigation of the laws of, 130 et

seq., 520 et seq. ; laws of, accident

of their form, 247 et seq.; see Des-

cent.

Falling, sensation of, 206.

Faraday, 124, 503, 530, 534, 587.

Feelings, the attempt to explain them

by motion, 506.

Fermat, on the method of tangents,

423

Fetishism, in modern ideas, 463.
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Fiction of a boat in motion, Huy-

gens's, 315. 325-

Figure of the earth, 395 et seq.

Films, liquid, 386, 392 et seq.

Fixed stars, 543 et seq., 568.

Flow, lines of, 400; of liquids, 416 et

seq.

Fluids, the principles of statics ap-

plied to, 86-110. See Liquids.

Fluid hypotheses, 496.

Foppl, 535-

Force, moment of, 37 '> the experien-

tial nature of, 42-44 ;
conception of;

in statics, 84 ;
general attributes

of, 85; the Galilean notion of, 142,

dispute concerning the measure of

148, 250, 270, 274-276; centrifugal

and centripetal, 158 et seq.; New-

ton on, 192, 197. 238,239; moving,

203, 243; resident, impressed, cen-

tripetal, accelerative, moving, 238^

239; the Newtonian measure of,

203, 239, 276 ; lines of, 400.

Force- function, 398 et seq., 479. 489J

Hamilton on, 350.

Force-relations, character of, 237.

Forces, the parallelogram of, 32, 33-

48, 243; principle of the composi-

tion and resolution of, 33~48 >
J 97 et

seq.; triangle of, 108; mutual inde-

pendence of, 154; Hving, see Vis

viva ; Newton on the parallelogram

of, 192, 197; impressed, equili-

brated, effective, gained and lost,

336; molecular, 384 et seq.; func-

tions of coordinates, 397, 402; cen-

tral, 397; at a distance, 534 et seq.

Formal development of science, 421.

Formulas, mechanical, 269-286.

Foucault and Toepler, optical method

of, 125.

Foucault's pendulum, 302.

Fourier, 270, 526.

Free rigid body, rotation of, 295.

Free systems, mutual action of, 287.

Friction, of minute bodies in liquids,

208; motion of liquids under, 416

et seq.

Friedlander, P. and J., 547-

Functions, mathematical, their office

in science, 492.

Fundamental equations of mechan-

ics, 270.

Funicular machine, 32.

Funnel, plunged in water, 412; rotat-

ing liquid in, 303.

" Galileo," name for unit of acceler-

ation, 285.

Galileo, his dynamical achievements,

128-155; his deduction of the law

of the lever, 12, 514; his explana-

tion of the inclined plane by the

lever, 23 ; his recognition of the

principle of virtual velocities, 51;

his researches in hydrostatics, 90;

his theory of the vacuum, 112 et

seq ; his discovery of the laws of

falling bodies, 130 et seq , 522; his

clock, 133 ; character of his in-

quiries, 140; his foundation of the

law of inertia, 143, 524 et seq., 563

et seq ; on the notion of accelera-

tion, 145; tabular presentment of

his discoveries, T47 ; on the pendu-

lum and the motion of projectiles,

152 et seq., 525 et seq.; founds dy-

namics, 128; his pendulum, 162;

his reasoning on the laws of falling

bodies, 130, 131, 247; his favorite

concepts, 250; on impact, 308-312;

his struggle with the Church, 446;

on the strength of materials, 451;

does not mingle science with the-

ology, 457; on inertia, 509; his

predecessors, 520 et seq.; on gravi-

tation, 533; on the tides, 537 et

seq., 580, 587.

Gaseous bodies, the principles of

statics applied to, 110-127.

Gases, flow of, 405; compression of,

407.

Gauss, his view of the principle of

virtual velocities, 76; on absolute

units, 278; his principle of least

constraint, 350-364, 55<> et seq., 576;

on the statics of liquids, 390; his

dioptrics, 489.

Gerber, Paul, 535.

Gilbert, 462, 532, 533-

Goldbeck, E., 532.

Gomperz, 518.
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Grassi, 94.

Grassmann, 480, 577 et seq., 581.

Gravitation, universal, 190, 531 et

seq., 533-

Gravitational system of measures,

284-286.

Gravity, centre of. See Centre of

gravity.

Greeks, science of, 509 et seq.

Green's Theorem, 109.

Guericke, his theological specula-

tions, 448 ; his experiments in aero-

statics, 117 et seq.; his notion of

air, 118 ; his air-pump, 120: his air-

gun, 123.

Gyration, centre of, 334.

Halley, 448.

Hamilton, on force-function, 350; his

hodograph, 527 ; his principle, 380--

384, 480, 576.

Heat, revision of the theory of, 496.

Helm, 585 et seq.

Helmholtz, ix ; on the conservation

of energy, 499, 501, 585.

Hemispheres, the Magdeburg, 122.

Henke, R., 552.

Hermann, employs a form of D'Alem-

bert's principle, 337; on motion in

a resisting medium, 435.

Hero, his fountain, 411; on the mo-

tion of light, 422 ; on maxima and

minima, 451, 511, 518 et seq.

Herrmann, A.. 580.

Hertz's system of Mechanics, 548 et

seq., 583.

Heymans, 558 et seq., 569 et seq.

Hiero, 86.

Hipp, chronoscope of, 151.

Hodograph, Hamilton's, 527.

Hofler, 558 et seq., 568.

Holder, O., 514.

Hollow space, liquids enclosing, 392.

Homogeneous, 279.

Hooke, 532.

Hopital, L', on the centre of oscilla-

tion, 331 ; on the brachistochrone,

426.

Horror vacui, 112.

Hume, on causality, 484.

Husserl, 581 et seq.

Huygens, dynamical achievements

of, 155-187; his deduction of the

law of the lever, 15-16; criticism

of his deduction, 17-18 ; his rank as

an inquirer, 155; character of his

researches, 156 et seq.; on centri-

fugal and centripetal force, 158 et

seq ; his experiment with light

balls in rotating fluids and his ex-

planation of gravity, 162, 528 et

seq.; on the pendulum and oscilla-

tory motion, 162 et seq.; on the

centre of oscillation, 173 et seq.;

his principle of the descent and
rise of the centre of gravity, 174;

his achievements in physics, 186,

187, 530; his favorite concepts, 251;

on impact, 313-327, 570; on the

principle of vis viva, 343, 348; on

the figure of the earth, 395 ; his op-

tical researches, 425; does not min-

gle science and theology, 457, 575.

Hydraulic ram, Montgolfier's, 411.

Hydrodynamic pressure, 413.

Hydrodynamics, 402-420.

Hydrostatic pressure, 413.

Hydrostatics, 384-402.

Hypotheses and facts, 494.

Images, constructive, 548 et seq.

Inclined plane, the principle of the,

24-33, 515 et seq.; Galileo's deduc-

tion of its laws, 151; descent on,

354 ; movable on rollers, 357 et seq.

Indeterminate coefficients, La-

grange's, 471 et seq.

Inelastic bodies, 317, 318.

Inertia, history and criticism of the

law of, 141, 143, 232, 238, 520, 524 et

seq., 542 et seq., 560 et seq
, 563 et

seq., 567 et seq.; moment of, 179,

182,186,489; bodies with variable

moments of, 302 ; Newton on, 238,

243-

Inertial system, 515.

Impact, the laws of, 305-330; force

of, compared with pressure, 312;

in the Newtonian view, 317 et seq.;

oblique, 327 ; Maupertuis's treat-

ment of, 365.

Impetus, 275.
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Impulse, 271.

Inquirers, the great, character and

value of their performances, 7;

their different tasks, 76; their atti-

tude towards religion, 457 ; their

philosophy, 516.

Inquiry, typical modes of, 317.

Instinct, mechanical, importance of,

304.

Instinctive knowledge, its cogency,

origin, and character, 1, 26-28, 83.

Instincts, our animal, 463.

Instruction, various methods of, 5.

Integral laws, 255, 461.

Intelligence, conception of, in na-

ture, 461.

Interdependence of the facts of na-

ture, 502 et passim.

Internal forces, action of, on free

systems, 289, 295.

International language, 481.

Isolation, 527.

Isoperimetrical problems, 421-446;

Euler's classification of, 433.

Isothermal surfaces, 400.

Jacobi, 76, 381,459; on principle of

least action, 371.

Jellett, on the calculus of variations,

437 et seq.

Johannesson, 547.

Jolly, x, 532.

Joule, 501, 584.

Judgments, economical character of

all, 483.

Kant, on causality, 484.

Kater, 186.

Kepler, his laws of planetary motion,

187; possibility of his discovery of

the laws of falling bodies, 248; on

maxima and minima, 423 ; on as-

trology, 463; on gravity, 532; on

tides, 538.

Kilogramme, 281.

Kilogramme-metre, 272.

Kinetic energy, 272, 499.

Kirchhoff, ix, 381, 555 et seq., 580.

Knowledge, instinctive, 1, 26-28,83;

the communication of, the founda-

tion of science, 4 ; the nature of, 5;

the necessary and sufficient condi-

tions of, 10.

Konig, on the cells of the honey-

comb, 453.

Laborde, apparatus of, 150.

Lagrange, his deduction of the law of

the lever, 13 ; his deduction of the

principle of virtual velocities, 65-

67; criticism of this last deduction,

67-68; his form of D'Alembert's

principle, 337; on vis viva, 349 ; on

the principle of least action, 371

;

on the calculus of variations, 436 et

seq.; emancipates physics from the-

ology, 457 ; his analytical mechan-

ics, x, 466, 553; his indeterminate

coefficients, 471 et seq.

Lami, on the composition of forces.

36.

Lange, 542 et seq.

Language, economical character of,

481 ;
possibility of a universal, 482;

the Chinese, 482.

Laplace, 463 534.

Lasswitz, 530.

Lateral pressure, 103.

Laws of nature, 502.

Laws, rules for the mental recon-

struction of facts, 83-84, 485.

Least action, principle of, 364-380;

its theological kernel, 454; anal-

ogies of, 577-

Least constraint, principle of, 350-

364-

Leibnitz, on the measure of force,

148, 250, 270, 274-276, 575; on quan-

tity of motion, 274 ; on the motion

of light, 425, 454; on the brachisto-

chrone, 426; as a theologian, 449.

Level surfaces, 98, 398 et seq.

Lever, the principle of the, 8-25, 512

et seq.; "potential," 20; applica-

tion of its principles to the expla-

nation of the other machines, 22;

its laws deduced by Newten' s prin-

ciples, 263-267; conditions of its

rigidity, 96 ; Maupertuis's treat-

ment of, 366.

Libraries, stored up experience, 481.

Light, motion of, 422, 424, 426; Mau-



6oo THE SCIENCE OF MECHANICS.

pertuis on motion of, 367 ; motion

of, in refracting media, 374-376, 377-

379 ; its minimal action explained,

459-

Limiting cases, 565.

Lindeloff, 437.

Lippich, apparatus of, 150.

Liquid efflux, velocity of, 402.

Liquid-head, 403, 416.

Liquid, rotating in a funnel, 303.

Liquids, the statics of, 86-110; the

dynamics of, 402-420; fundamental

properties of, 91 ; compressibility

of, 92; equilibrium of, subjected to

gravity, 96 ; immersed in liquids,

pressure of, 105; lateral pressure of,

103; weightless, 384 et seq.; com-

pression of, 407 ; soniferous, vibra-

tions of, 407 ; mobile, 407 ; motion

of viscous, 416.

Living forces. See Vis viva.

Living power, 272.

Lobatchevski, 493.

Locomotive, oscillations of the body

of, 292.

Luther, 463.

MacGregor, J. G., 547.

Mach, history of his views, 555 et

seq.; his definition of mass, 558 et

seq.; his theory of the development

of physical knowledge, 581 et seq.;

his treatment of the law of inertia,

560 et seq.

Machines, the simple, 8 et seq.

Maclaurin on the cells of the honey-

comb, 453; his contributions to ana-

lytical mechanics, 466.

Magnus, Valerianus, 117.

Manometer, statical, 123.

Maraldi, on the honeycomb, 453.

Marci, Marcus, 305-308.

Mariotte, his law, 125 ; his apparatus

and experiments, 126 et seq.; on im-

pact, 313.

Mass-areas, 295.

Mass, criticism of the concept of, 216

-222; Newton on, and as quantity

of matter, 192, 194. 2I 7» 238, 251, 536

et seq.; John Bernoulli on, 251 ; as

a physical property, 194 ; distin-

guished from weight, 195 ; measur-

able by weight, 195, 220; scientific

definition of, 218 et seq., 243, 540 et

seq., 558 et seq., 573; involves prin-

ciple of reaction, 220.

Mass, motion of a, in principle of

least action, 372.

Mathematics, function of, 77.

Matter, quantity of, 216, 238, 536 et

seq., 559 et seq.

Maupertuis, his lot de repos, 68 et

seq ; on the principle of least ac-

tion, 364, 368; his theological pro-

clivities, 454.

Maxima and minima, 368 et seq.;

problems of, 422 et seq.

Maximal and minimal effects, ex-

planation of, 460.

Maxims, scholastic, 143.

Maxwell, 271, 530, 534, 540.

Mayer, J. R., 249, 5°3» 584. 586.

McCormack, Thomas J., 580.

Measures. See Units.

Mechanical, experiences, 1 ; knowl-

edge of antiquity, 1-3 ;
phenomena,

purely, 495 et seq.; theory of na-

ture, its untenability, 495 et seq.;

phenomena not fundamental, 496;

conception of the world, artificial-

ity of, 496.

Mechanics, the science of, 1; earliest

researches in, 8; extended applica-

tion of the principles of, and deduc-

tive development of the science,

256-420 ; the formulae and units of,

269-286; character of the principles

of, 237 ; form of its principles

mainly of historical and accidental

origin, 247 et seq.; theological, ani-

mistic, and mystical points of view-

in, 446-465 ; fundamental equations

of, 270-276 ; new transformation of,

480; relations of, to other depart-

ments of knowledge, 495-507; rela-

tions of, to physics, 495-504; rela-

tions of, to physiology, 5°4-5°7; an

aspect, not the foundation of the

world, 496, 507; analytical, 465-480;

Newton' s geometrical, 465; Hertz's,

548 et seq.

Medium, motion-determinative, hy-
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1

pothesis of, in space, 230, 547 ; re-

sisting, motion in, 435.

Memory, 481, 488.

Mensbrugghe, Van der, on liquid

films, 386.

Mental artifices, 492 et seq.

Mercurial air-pump, 125.

Mersenne, 114, 174.

Metaphysical point of view, 586.

Method of tangents, 423.

Metre, 280.

Mimicking, of facts in thought. See

Reproduction.

Minima. See Maxima.
Minimum of superficial area, 387.

Minimum principles, 550, 575 et seq.

Mixed equilibrium, 70-71.

Mobile liquids, 407.

Mobius, 372, 480.

Models, mental, 492.

Molecular forces, 384 et seq.

Moment, statical, 14; of force, 37; of

inertia, 179, 182, 186.

Moments, virtual, 57.

Momentum, 241, 244, 271 ; law of the

conservation of, 288 ; conservation

of, interpreted, 326.

Monistic philosophy, the, 465.

Montgolfier's hydraulic ram, 411.

Moon, its acceleration towards the

earth, 190 ; length of its day in-

creased to a month, 299.

Morin, apparatus of, 150.

Motion, Newton's laws of, 227,241;

quantity of, 238, 271 et seq.; equa-

tions of, 342, 371 ; circular, laws of,

158 et seq.; uniformly accelerated,

132, relative and absolute, 227 et

seq., 542 et seq., 568.

Motivation, law of, 484.

Mueller, J., 510.

Miiller, F. A., 585 et seq.

Mystical points of view in mechan-

ics, 456.

Mysticism in science, 481.

Mythology, mechanical, 464.

Napier, his theological inclinations,

447-

Nature, laws of, 502.

Necessity, 484, 485.

Neumann, C, 255, 567 et seq., 572,

577-

Neutral equilibrium, 70-71.

Newton, his dynamical achievements,

187-201; his views of absolute time,

space, and motion, 222-238, 543, 568,

570 et seq.; synoptical critique of

his enunciations, 238-245,557,578;

scope of his principles, 256-269;

enunciates the principle of the par-

allelogram of forces, 36; his prin-

ciple of similitude, 165 et seq ; his

discovery of universal gravitation,

its character, and its law, 188 et

seq., 533 et seq.; effect of this dis-

covery on mechanics, 191 ; his me-

chanical discoveries, 192; his regu-

Ice fihilosophandi, 193, 580; his idea

of force, 193 ; his concept of mass,

194 et seq., 536 et seq.; on the com-
position of forces, 197 ; on action

and reaction, 198; defects and mer-

its of his doctrines, 201, 244; on the

tides, 209 et seq.; his definitions,

laws, and corollaries, 238-242 ; his

water-pendulum, 409 ; his theologi-

cal speculations, 448 ; the economy
and wealth of his ideas, 269 ; his

laws and definitions, proposed sub-

stitutes for, 243 ; his favorite con-

cepts, 251 ; on the figure of the

earth, 395 ; does not mingle theol-

ogy with science, 457 ; on the bra-

chistochrone, 426; his theory of

light, 530; his forerunners, 531.

Numbers, 486.

Observation, 82.

Occasionalism, the doctrine of, 449.

Oersted, 93.

Oil, use of, in Plateau's experiments,

384 et seq.

Oscillation, centre of, 331-335.

Oscillatory motion, 162 et seq.

Ostwald, 577, 585.

Pagan ideas in modern life, 462.

Page's electromotor, 292.

Pappus, 422 ; on maxima and min-

ima, 451.

Parallelism of strata, 409.
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Parallelogram of forces. See Forces.

Particular determination, principle

of, 544-

Pascal, his application of the prin-

ciple of virtual velocities to the

statics of liquids, 54, 91, 96; his ex-

periments in liquid pressure, 99;

his paradox, 101-102 ; his great pi-

ety, 447; criticism of his deduction

of the hydrostatic principle, 95~9^;

his experiments in atmospheric

pressure, 114 et seq., 575.

Pearson, Karl, 547.

Peltier's effect, 503.

Pendulum, motion of, 152, 163, 168;

law of motion of, 168 ;
experiments

illustrative ol motion of, 168 et seq.;

conical, 171; determination of g by,

172; simple and compound, 173, 177;

cycloidal, 186; a falling, 205 ; bal-

listic, 328 ; liquid, 409.

Percussion, centre of, 327. See Im-

pact.

Percussion-machine, 313.

Perier, 115.

Perpetual motion, 25, 89, 500.

Petzoldt, 542, 552, 558 et seq., 562, 571

et seq., 575 et seq., 580.

Philo, 518.

Philosophy of the specialist, the, 506.

Phoronomic similarity, 166.

Physics and theology, separation of,

456.

Physics, artificial division of, 495;

necessity of a comparative, 498; re-

lations of mechanics to, 495-5°4 *,

disproportionate formal develop-

ment of, 505.

Physiology, relations of mechanics

to, 504-507 ;
distinguished from

physics, 507.

Pila Heronis, 118, 412.

Place, 222, 226.

Planck, 585 et seq.

Planets, motion of, 187 et seq.

Plateau, on the statics of liquids, 384

-394 ; Plateau's problem, 393.

Pliny, 510.

Poggendorf's apparatus, 206 et seq.

Poinsot, 186, 251, 269, 480.

Poisson, 42, 46.

Polar and parallel coordinates, 304,

Poncelet, 251, 272,

Popper, J., 584 et seq.

Porta, 462.

Poske, on the law of inertia, 524, 558.

Potential, no, 398 et seq.; potential

function, 497; potential energy, 499.

Pound, Imperial, Troy, Avoirdupois,

283.

Pre-established harmony, 449.

Pressure, origin of the notion of, 84;

liquid, 90, 99, et seq.; of falling bod-

ies, 205 ;
hydrodynamic and hydro-

static, 413; of liquids in motion, 414.

Pressure-head, 403, 416.

Principles, their general character

and accidental form, 79, 83, 421. See

Laws.

Projectiles, motion of, 152 et seq.,

525 et seq.; treated by the principle

of least action, 369.

Projection, oblique, 153; range of, 154.

Proof, the natural methods of, 80.

Ptolemy, 232, 509.

Pulleys, 21, 49-51.

Pump, 112.

Pythagoras, 422, 509.

Quantity, of matter, 216, 238, 536 et

seq., 539 et seq.; of motion, 238, 271

et seq.

Quickest descent, curve of, 426.

Radii vector es, 294.

Rationalism, 458.

Reaction, discussion and illustration

of the principle of, 201-216; criti-

cism of the principle of, 216-222;

Newton on, 198, 201, 242.

Reaction-tubes, 301.

Reaction-wheels, 299 et seq.

Reaumur, 453-

Reason, sufficient, principle of, 9, 484,

502.

Reconstruction of facts, mental. See

Reproduction.

Refiguring of facts in thought. See

Reproduction.

Refraction, ecqnomical character of

law Ql 485.
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Regulce philosophandi, Newton's, 193,

580.

Regularity, 395.

Religious opinions, Our, 464.

Repos, lot de, 68.

Representation. See Reproduction.

Reproduction of facts in thought, 5,

84, 421, 481-494.

Research, means and aims of, distin-

guished, 507.

Resistance head, 417.

Rest, Maupertuis's law of, 68, 259.

Resultant of force, 34.

Richer, 161, 251.

Riemann, 493.

Roberval, his balance, 60; his method

of maxima and minima, 423 ; on

momenta, 305 ; on the composition

of forces, 197.

Robins. 330.

Rose, V., 518.

Rosenberger, 531, 536.

Routh, 352.

Routine methods, 181, 268, 287, 341.

Rules, 83, 485 ; the testing of, 81.

Sail filled with wind, curve of, 431.

Santbach, 525.

Sauveur, 526.

Scheffler, 353, 364-

Schiaparelli. 509.

Schmidt, W., 519.

Schopenhauer, on causality, 484.

Science, the nature and development

of, 1-7 ; the origin of, 4, 8, 78 ; de-

ductive and formal development of,

421
;
physical, its pretensions and

attitude, 464 et seq.; the economy

of, 481-494 ; a minimal problem,

490; the object of, 496, 497, 502, 507;

means and aims of, should be dis-

tinguished, 504, 505; condition of

the true development of, 504 ; divi-

sion of labor in, 505; tools and in-

struments of, 505.

Science and theology, conflict of, 446

;

their points of identity, 460.

Scientists, struggle of, with their own
preconceived ideas, 447.

Seebeck's phenomenon, 503.

Segner, 186; Segner's wheel, 309.

Sensations, analysis of, 464; the ele-

ments of nature, 482 ; their relative

realness, 506.

Shortest line, 369, 371.

Similarity, phoronomic, 166.

Similitude, the principle of, 166, 177.

Siphon, 114 et seq.

Smith, Adam, 580.

Space, Newton on, 226; absolute and

relative, 226, 232, 543, 568, 570 et

seq.; a set of sensations, 506; multi-

dimensioned, an artifice of thought,

493 ; a sort of medium, 547.

Spannkraft
, 499.

Specific gravity, 87-88.

Sphere, rolling on inclined plane,

346.

Spiritism, or spiritualism, 49.

Stable equilibrium, 70-71.

Stage of thought, the, 505.

Statical manometer, 123.

Statical moment, 14 ;
possible origin

of the idea, 21.

Statics, deduction of its principles

from hydrostatics, 107 et seq.; the

development of the principles of,

8-127 ; retrospect of the develop-

ment of, 77-85 ; the principles of,

applied to fluids, 86-110 ; the prin-

ciples of, applied to gaseous bod-

ies, 110-127; Varignon's dynamical,

38, 268; analytical, founded by La-

grange on the principle of virtual

velocities, 467.

Stevinus, his deduction of the law of

the inclined plane, 24-31, 515 et

seq.; his explanation of the other

machines by the inclined plane, 31-

33 ; the parallelogram of forces de-

rived from his principle, 32-35 ;
his

discovery of the germ of the prin-

ciple of virtual velocities, 49-51;

his researches in hydrostatics, 88-

90; his broad view of nature, 500.

Strata, parallelism of, 409.

Strato, 518.

Streintz, 542 et seq.

String, equilibrium of a, 372 et seq.

See Catenary,

Strings, equilibrium of three-knotted,

61 ; equilibrium of ramifying, 33.
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Substance, 536.

Suction, 112.

Sufficient reason, the principle of, g,

484, 502.

Superposition, 527.

Surface of liquids, connection of,

with equilibrium, 386-390.

Surfaces, isothermal, 400 ; level, 98,

398 et seq.

Symmetry of liquid films explained,

394-

Synoptical critique of the Newtonian
enunciations, 238-245.

Synthetic method, 466.

Tangents, method of, 423.

Taylor, Brook, on the centre of os-

cillation, 335.

Teleology, or evidences of design in

nature, 452.

Theological points of view in me-
chanics, 446 et seq.; inclinations of

great physicists, 450.

Theology and science, conflict of, 446;

their points of identity, 460.

Theorems, 421.

Theories, 491 et seq.

Thermometers, their construction,

282.

Things, their nature, 482 ; things of

thought, 492 et seq.

Thomson and Tait, their opinion of

Newton's laws, 245, 557, 585.

Thought, instruments of, 505 ; things

of, 492 et seq.; experimenting in,

523; economy of. See Economy,

Tides, Newton on, 209 et seq.; their

effect on the army of Alexander the

Great, 209; explanation of, 213 et

seq ; their action illustrated by an
experiment 215; Kepler on, 532, 538;

early theories of, 537 et seq.; Gali-

leo on, 537 et seq.

Time, sensations of, 506, 541 ; New-
ton's view of, 222-238; absolute and
relative, 222, 542; nature of, 223-

226, 234.

Toeppler and Foucault, optical

method of, 125.

Torricelli, his modification of Gali-

leo's deduction of the law of the

inclined plane, 52 ; his measure^

ment of the weight of the atmos-

phere, 113; founds dynamics, 402;

his vacuum experiment, 113; founds

hydrodynamics, 402 ; on the velo-

city of liquid efflux, 402.

Trades and classes, function of, in the

development of science, 4.

Trade winds, 302.

Tubes, motion of liquids in, 416 et

seq.

Tylor, 462, 463.

Tyndall, 584.

Ubaldi, Guido, his statical re-

searches, 21.

Uniquely determined, 10, 502, 575 et

seq.

Unitary conception of nature, 5.

Units, 269-286.

Unstable equilibrium, 70-71.

Vacuum, 112 et seq.

Vailati. 521. 526.

Variation, of curve-elements, 432 et

seq.

Variations, calculus of, 436 et seq.

Varignon, enunciates the principle of

the parallelogram of forces, 36 ; on
the simple machines. 37; his statics

a dynamical statics, 38 ; on velocity

of liquid efflux, 403.

Vas superficiarium of Stevinus, 89.

Vehicle on wheels, 291.

Velocity, 144; angular, 296; a phys-

ical level, 325.

Velocity-head, 417.

Venturi, 520.

Vibration. See Oscillation.

Vicaire, 547.

View, breadth of, possessed by all

great inquirers, 500 et seq.

Vinci, Leonardo Da, on the law of

the lever, 20, 520.

Virtual displacements, definition of,

57. See also Virtual velocities.

Virtual moments, 57.

Virtual velocities, origin and mean-
ing of the term, 49 ; the principle

of, 49-77.

Viscosity of liquids, 416.
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Vis mortua, 272, 275.

Vis viva, 272 et seq., 315; conserva-

tion of, 317; interpreted, 326; in im-

pact, 322 et seq.; principle of, 343-

350; connection of Huygens's prin-

ciple with, 178; principle of, de-

duced from Lagrange's fundamen-
tal equations, 478. 499.

Vitruvius, on the nature of sound, 3;

his account of Archimedes' s dis-

covery, 86 ; on ancient air-instru-

ments, no.

Viviani, 113.

Volkmann, P., 527, 557 et seq., 573.

Voltaire, 449, 454.

Volume of liquids, connection of

with equilibrium, 387-390:

Wallis, on impact, 313; on the centre

of percussion, 327.

Water, compressibility of, 93.

Weightless liquids, 384 et seq.

Weights and measures. See Units.

Weston, differential pulley of, 59.

Weyrauch, 585.

Wheatstone, chronoscope of, 151.

Wheel and axle, with non-circular

wheel, 72; motion of, 22 et seq., 60,

337, 344. 354. 381.

Wien, W., 536.

Will, conception of, in nature, 461.

Wire frames, Plateau's, 393.

Wohlwill, on the law of inertia, 308,

520, 524 et seq.

Woodhouse, on isoperimetrical prob-

lems, 430.

Wood, on the cells of the honeycomb,

453.

Work. 54, 67 et seq , 248 et seq., 363;

definition of, 272 ; determinative of

vis viva, 178 ; accidentally not the

original concept of mechanics, 548

;

J. R. Mayers views of, 249; Huy-
gens's appreciation of, 252, 272 ; in

impact, 322 et seq.; of molecular

forces in liquids, 385 et seq.; posi-

tive and negative, 386; of liquid

forces of pressure, 415 ; of com-
pression, 407.

Wren, on impact, 313.

Wright, Chauncey, 453.

Yard, Imperial, 281; American, 283
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